1. operator
Operators¤
Operators are the core of the torchfsm library. Each operator represents a specific physical process, such as convection, diffusion, or pressure calculation.
torchfsm.operator.Biharmonic
¤
Bases: LinearOperator
Biharmonic
calculates the Biharmonic of a vector field.
It is defined as \(\nabla^4\mathbf{u}=\left[\begin{matrix}(\sum_{i=0}^I\frac{\partial^2}{\partial i^2 })(\sum_{j=0}^I\frac{\partial^2}{\partial j^2 })u_x \\ (\sum_{i=0}^I\frac{\partial^2}{\partial i^2 })(\sum_{j=0}^I\frac{\partial^2}{\partial j^2 })u_y \\ \cdots \\ (\sum_{i=0}^I\frac{\partial^2}{\partial i^2 })(\sum_{j=0}^I\frac{\partial^2}{\partial j^2 })u_i \\ \end{matrix} \right]\)
Note that this class is an operator wrapper. The real implementation of the source term is in the _BiharmonicCore
class.
Source code in torchfsm/operator/generic/_biharmonic.py
19 20 21 22 23 24 25 26 27 28 |
|
_state_dict
instance-attribute
¤
_state_dict = {
"f_mesh": None,
"n_channel": None,
"linear_coef": None,
"nonlinear_func": None,
"operator": None,
"integrator": None,
"invert_linear_coef": None,
}
_value_mesh_check_func
instance-attribute
¤
_value_mesh_check_func = lambda dim_value, dim_mesh: True
register_mesh
¤
register_mesh(
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
],
n_channel: int,
device=None,
dtype=None,
)
Register the mesh and number of channels for the operator. Once a mesh is registered, mesh information is not required for integration and operator call.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. |
required |
n_channel
|
int
|
Number of channels of the input tensor. |
required |
device
|
Optional[device]
|
Device to which the mesh should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the mesh. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
|
solve
¤
solve(
b: Optional[torch.Tensor] = None,
b_fft: Optional[torch.Tensor] = None,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
n_channel: Optional[int] = None,
return_in_fourier=False,
) -> Union[
SpatialTensor["B C H ..."], SpatialTensor["B C H ..."]
]
Solve the linear operator equation \(Ax = b\), where \(A\) is the linear operator and \(b\) is the right-hand side.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
b
|
Optional[Tensor]
|
Right-hand side tensor in spatial domain. If None, b_fft should be provided. |
None
|
b_fft
|
Optional[Tensor]
|
Right-hand side tensor in Fourier domain. If None, b should be provided. |
None
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. If None, the mesh registered in the operator will be used. |
None
|
n_channel
|
Optional[int]
|
Number of channels of \(x\). If None, the number of channels registered in the operator will be used. |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], SpatialTensor['B C H ...']]
|
Union[SpatialTensor["B C H ..."], FourierTensor["B C H ..."]]: Solution tensor in spatial or Fourier domain. |
Source code in torchfsm/operator/_base.py
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
|
__radd__
¤
__radd__(other)
Source code in torchfsm/operator/_base.py
176 177 |
|
__iadd__
¤
__iadd__(other)
Source code in torchfsm/operator/_base.py
179 180 |
|
__sub__
¤
__sub__(other)
Source code in torchfsm/operator/_base.py
182 183 184 185 186 |
|
__rsub__
¤
__rsub__(other)
Source code in torchfsm/operator/_base.py
188 189 190 191 192 |
|
__isub__
¤
__isub__(other)
Source code in torchfsm/operator/_base.py
194 195 |
|
__rmul__
¤
__rmul__(other)
Source code in torchfsm/operator/_base.py
197 198 |
|
__imul__
¤
__imul__(other)
Source code in torchfsm/operator/_base.py
200 201 |
|
__truediv__
¤
__truediv__(other)
Source code in torchfsm/operator/_base.py
203 204 205 206 207 |
|
_build_linear_coefs
¤
_build_linear_coefs(
linear_coefs: Optional[Sequence[LinearCoef]],
)
Build the linear coefficients based on the provided linear coefficient generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
linear_coefs
|
Optional[Sequence[LinearCoef]]
|
List of linear coefficient generators. |
required |
Source code in torchfsm/operator/_base.py
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
|
_build_nonlinear_funcs
¤
_build_nonlinear_funcs(
nonlinear_funcs: Optional[Sequence[NonlinearFunc]],
)
Build the nonlinear functions based on the provided nonlinear function generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nonlinear_funcs
|
Optional[Sequence[NonlinearFunc]]
|
List of nonlinear function generators. |
required |
Source code in torchfsm/operator/_base.py
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
|
_build_operator
¤
_build_operator()
Build the operator based on the linear coefficient and nonlinear function. If both linear coefficient and nonlinear function are None, the operator is set to None.
Source code in torchfsm/operator/_base.py
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
|
_build_integrator
¤
_build_integrator(dt: float)
Build the integrator based on the provided time step and integrator type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dt
|
float
|
Time step for the integrator. |
required |
Source code in torchfsm/operator/_base.py
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
|
_pre_check
¤
_pre_check(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
] = None,
) -> Tuple[FourierMesh, int]
Pre-check the input tensor and mesh. If the mesh is not registered, register it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. Default is None. If None, the mesh registered in the operator will be used. |
None
|
Returns:
Type | Description |
---|---|
Tuple[FourierMesh, int]
|
Tuple[FourierMesh, int]: Tuple of Fourier mesh and number of channels. |
Source code in torchfsm/operator/_base.py
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
|
regisiter_additional_check
¤
regisiter_additional_check(
func: Callable[[int, int], bool]
)
Register an additional check function for the value and mesh compatibility.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
func
|
Callable[[int, int], bool]
|
Function that takes the dimension of the value and mesh as input and returns a boolean indicating whether they are compatible. |
required |
Source code in torchfsm/operator/_base.py
589 590 591 592 593 594 595 596 |
|
add_generator
¤
add_generator(generator: GeneratorLike, coef=1)
Add a generator to the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generator
|
GeneratorLike
|
Generator to be added. It should be a callable that takes a Fourier mesh and number of channels as input and returns a linear coefficient or nonlinear function. |
required |
coef
|
float
|
Coefficient for the generator. Default is 1. |
1
|
Source code in torchfsm/operator/_base.py
598 599 600 601 602 603 604 605 606 607 |
|
set_integrator
¤
set_integrator(
integrator: Union[
Literal["auto"], ETDRKIntegrator, RKIntegrator
],
**integrator_config
)
Set the integrator for the operator. The integrator is used for time integration of the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
integrator
|
Union[Literal['auto'], ETDRKIntegrator, RKIntegrator]
|
Integrator to be used. If "auto", the integrator will be chosen automatically based on the operator type. If "auto", the integrator will be set as ETDRKIntegrator.ETDRK0 for linear operators and ETDRKIntegrator.ETDRK4 for nonlinear operators. |
required |
**integrator_config
|
Additional configuration for the integrator. |
{}
|
Source code in torchfsm/operator/_base.py
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
|
integrate
¤
integrate(
u_0: Optional[torch.Tensor] = None,
u_0_fft: Optional[torch.Tensor] = None,
dt: float = 1,
step: int = 1,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
progressive: bool = False,
trajectory_recorder: Optional[_TrajRecorder] = None,
return_in_fourier: bool = False,
) -> Union[
SpatialTensor["B C H ..."],
SpatialTensor["B T C H ..."],
FourierTensor["B C H ..."],
FourierTensor["B T C H ..."],
]
Integrate the operator using the provided initial condition and time step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u_0
|
Optional[Tensor]
|
Initial condition in spatial domain. Default is None. |
None
|
u_0_fft
|
Optional[Tensor]
|
Initial condition in Fourier domain. Default is None. At least one of u_0 or u_0_fft should be provided. |
None
|
dt
|
float
|
Time step for the integrator. Default is 1. |
1
|
step
|
int
|
Number of time steps to integrate. Default is 1. |
1
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
progressive
|
bool
|
If True, show a progress bar during integration. Default is False. |
False
|
trajectory_recorder
|
Optional[_TrajRecorder]
|
Trajectory recorder for recording the trajectory during integration. Default is None. If None, no trajectory will be recorded. The function will only return the final frame. |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], SpatialTensor['B T C H ...'], FourierTensor['B C H ...'], FourierTensor['B T C H ...']]
|
Union[SpatialTensor["B C H ..."], SpatialTensor["B T C H ..."], FourierTensor["B C H ..."], FourierTensor["B T C H ..."]]: Integrated result in spatial or Fourier domain. If trajectory_recorder is provided, the result will be a trajectory tensor of shape (B, T, C, H, ...). Otherwise, the result will be a tensor of shape (B, C, H, ...). If return_in_fourier is True, the result will be in Fourier domain. Otherwise, it will be in spatial domain. |
Source code in torchfsm/operator/_base.py
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
|
__call__
¤
__call__(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
return_in_fourier=False,
) -> Union[
SpatialTensor["B C H ..."], FourierTensor["B C H ..."]
]
Call the operator with the provided input tensor. The operator will apply the linear coefficient and nonlinear function to the input tensor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], FourierTensor['B C H ...']]
|
Union[SpatialTensor["B C H ..."], FourierTensor["B C H ..."]]: Result of the operator in spatial or Fourier domain. |
Source code in torchfsm/operator/_base.py
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
|
to
¤
to(device=None, dtype=None)
Move the operator to the specified device and change the data type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device
|
Optional[device]
|
Device to which the operator should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the operator. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
743 744 745 746 747 748 749 750 751 752 753 |
|
__add__
¤
__add__(other)
Source code in torchfsm/operator/_base.py
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 |
|
__mul__
¤
__mul__(other)
Source code in torchfsm/operator/_base.py
859 860 861 862 863 864 865 |
|
__neg__
¤
__neg__()
Source code in torchfsm/operator/_base.py
867 868 869 870 |
|
__init__
¤
__init__() -> None
Source code in torchfsm/operator/generic/_biharmonic.py
27 28 |
|
torchfsm.operator.ConservativeConvection
¤
Bases: NonlinearOperator
ConservativeConvection
calculates the convection of a vector field on itself.
It is defined as \(\nabla \cdot \mathbf{u}\mathbf{u}=\left[\begin{matrix}\sum_{i=0}^I \frac{\partial u_i u_x }{\partial i} \\\sum_{i=0}^I \frac{\partial u_i u_y }{\partial i} \\\cdots\\\sum_{i=0}^I \frac{\partial u_i u_I }{\partial i} \\\end{matrix}\right]\).
This operator only works for vector fields with the same dimension as the mesh.
Note that this class is an operator wrapper. The real implementation of the source term is in the _ConservativeConvectionCore
class.
Source code in torchfsm/operator/generic/_conservative_convection.py
46 47 48 49 50 51 52 53 54 55 |
|
_state_dict
instance-attribute
¤
_state_dict = {
"f_mesh": None,
"n_channel": None,
"linear_coef": None,
"nonlinear_func": None,
"operator": None,
"integrator": None,
"invert_linear_coef": None,
}
_value_mesh_check_func
instance-attribute
¤
_value_mesh_check_func = lambda dim_value, dim_mesh: True
set_de_aliasing_rate
¤
set_de_aliasing_rate(de_aliasing_rate: float)
Set the de-aliasing rate for the nonlinear operator. Args: de_aliasing_rate (float): De-aliasing rate. Default is ⅔.
Source code in torchfsm/operator/_base.py
275 276 277 278 279 280 281 282 283 |
|
__radd__
¤
__radd__(other)
Source code in torchfsm/operator/_base.py
176 177 |
|
__iadd__
¤
__iadd__(other)
Source code in torchfsm/operator/_base.py
179 180 |
|
__sub__
¤
__sub__(other)
Source code in torchfsm/operator/_base.py
182 183 184 185 186 |
|
__rsub__
¤
__rsub__(other)
Source code in torchfsm/operator/_base.py
188 189 190 191 192 |
|
__isub__
¤
__isub__(other)
Source code in torchfsm/operator/_base.py
194 195 |
|
__rmul__
¤
__rmul__(other)
Source code in torchfsm/operator/_base.py
197 198 |
|
__imul__
¤
__imul__(other)
Source code in torchfsm/operator/_base.py
200 201 |
|
__truediv__
¤
__truediv__(other)
Source code in torchfsm/operator/_base.py
203 204 205 206 207 |
|
_build_linear_coefs
¤
_build_linear_coefs(
linear_coefs: Optional[Sequence[LinearCoef]],
)
Build the linear coefficients based on the provided linear coefficient generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
linear_coefs
|
Optional[Sequence[LinearCoef]]
|
List of linear coefficient generators. |
required |
Source code in torchfsm/operator/_base.py
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
|
_build_nonlinear_funcs
¤
_build_nonlinear_funcs(
nonlinear_funcs: Optional[Sequence[NonlinearFunc]],
)
Build the nonlinear functions based on the provided nonlinear function generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nonlinear_funcs
|
Optional[Sequence[NonlinearFunc]]
|
List of nonlinear function generators. |
required |
Source code in torchfsm/operator/_base.py
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
|
_build_operator
¤
_build_operator()
Build the operator based on the linear coefficient and nonlinear function. If both linear coefficient and nonlinear function are None, the operator is set to None.
Source code in torchfsm/operator/_base.py
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
|
_build_integrator
¤
_build_integrator(dt: float)
Build the integrator based on the provided time step and integrator type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dt
|
float
|
Time step for the integrator. |
required |
Source code in torchfsm/operator/_base.py
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
|
_pre_check
¤
_pre_check(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
] = None,
) -> Tuple[FourierMesh, int]
Pre-check the input tensor and mesh. If the mesh is not registered, register it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. Default is None. If None, the mesh registered in the operator will be used. |
None
|
Returns:
Type | Description |
---|---|
Tuple[FourierMesh, int]
|
Tuple[FourierMesh, int]: Tuple of Fourier mesh and number of channels. |
Source code in torchfsm/operator/_base.py
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
|
register_mesh
¤
register_mesh(
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
],
n_channel: int,
device=None,
dtype=None,
)
Register the mesh and number of channels for the operator. Once a mesh is registered, mesh information is not required for integration and operator call.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. |
required |
n_channel
|
int
|
Number of channels of the input tensor. |
required |
device
|
Optional[device]
|
Device to which the mesh should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the mesh. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
|
regisiter_additional_check
¤
regisiter_additional_check(
func: Callable[[int, int], bool]
)
Register an additional check function for the value and mesh compatibility.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
func
|
Callable[[int, int], bool]
|
Function that takes the dimension of the value and mesh as input and returns a boolean indicating whether they are compatible. |
required |
Source code in torchfsm/operator/_base.py
589 590 591 592 593 594 595 596 |
|
add_generator
¤
add_generator(generator: GeneratorLike, coef=1)
Add a generator to the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generator
|
GeneratorLike
|
Generator to be added. It should be a callable that takes a Fourier mesh and number of channels as input and returns a linear coefficient or nonlinear function. |
required |
coef
|
float
|
Coefficient for the generator. Default is 1. |
1
|
Source code in torchfsm/operator/_base.py
598 599 600 601 602 603 604 605 606 607 |
|
set_integrator
¤
set_integrator(
integrator: Union[
Literal["auto"], ETDRKIntegrator, RKIntegrator
],
**integrator_config
)
Set the integrator for the operator. The integrator is used for time integration of the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
integrator
|
Union[Literal['auto'], ETDRKIntegrator, RKIntegrator]
|
Integrator to be used. If "auto", the integrator will be chosen automatically based on the operator type. If "auto", the integrator will be set as ETDRKIntegrator.ETDRK0 for linear operators and ETDRKIntegrator.ETDRK4 for nonlinear operators. |
required |
**integrator_config
|
Additional configuration for the integrator. |
{}
|
Source code in torchfsm/operator/_base.py
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
|
integrate
¤
integrate(
u_0: Optional[torch.Tensor] = None,
u_0_fft: Optional[torch.Tensor] = None,
dt: float = 1,
step: int = 1,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
progressive: bool = False,
trajectory_recorder: Optional[_TrajRecorder] = None,
return_in_fourier: bool = False,
) -> Union[
SpatialTensor["B C H ..."],
SpatialTensor["B T C H ..."],
FourierTensor["B C H ..."],
FourierTensor["B T C H ..."],
]
Integrate the operator using the provided initial condition and time step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u_0
|
Optional[Tensor]
|
Initial condition in spatial domain. Default is None. |
None
|
u_0_fft
|
Optional[Tensor]
|
Initial condition in Fourier domain. Default is None. At least one of u_0 or u_0_fft should be provided. |
None
|
dt
|
float
|
Time step for the integrator. Default is 1. |
1
|
step
|
int
|
Number of time steps to integrate. Default is 1. |
1
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
progressive
|
bool
|
If True, show a progress bar during integration. Default is False. |
False
|
trajectory_recorder
|
Optional[_TrajRecorder]
|
Trajectory recorder for recording the trajectory during integration. Default is None. If None, no trajectory will be recorded. The function will only return the final frame. |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], SpatialTensor['B T C H ...'], FourierTensor['B C H ...'], FourierTensor['B T C H ...']]
|
Union[SpatialTensor["B C H ..."], SpatialTensor["B T C H ..."], FourierTensor["B C H ..."], FourierTensor["B T C H ..."]]: Integrated result in spatial or Fourier domain. If trajectory_recorder is provided, the result will be a trajectory tensor of shape (B, T, C, H, ...). Otherwise, the result will be a tensor of shape (B, C, H, ...). If return_in_fourier is True, the result will be in Fourier domain. Otherwise, it will be in spatial domain. |
Source code in torchfsm/operator/_base.py
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
|
__call__
¤
__call__(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
return_in_fourier=False,
) -> Union[
SpatialTensor["B C H ..."], FourierTensor["B C H ..."]
]
Call the operator with the provided input tensor. The operator will apply the linear coefficient and nonlinear function to the input tensor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], FourierTensor['B C H ...']]
|
Union[SpatialTensor["B C H ..."], FourierTensor["B C H ..."]]: Result of the operator in spatial or Fourier domain. |
Source code in torchfsm/operator/_base.py
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
|
to
¤
to(device=None, dtype=None)
Move the operator to the specified device and change the data type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device
|
Optional[device]
|
Device to which the operator should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the operator. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
743 744 745 746 747 748 749 750 751 752 753 |
|
__add__
¤
__add__(other)
Source code in torchfsm/operator/_base.py
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 |
|
__mul__
¤
__mul__(other)
Source code in torchfsm/operator/_base.py
929 930 931 932 933 934 935 |
|
__neg__
¤
__neg__()
Source code in torchfsm/operator/_base.py
937 938 939 940 |
|
__init__
¤
__init__() -> None
Source code in torchfsm/operator/generic/_conservative_convection.py
54 55 |
|
torchfsm.operator.Convection
¤
Bases: NonlinearOperator
Convection
calculates the convection of a vector field on itself if the vector field is divergence free, i.e., \(\nabla \cdot \mathbf{u} =0\).
It is defined as \(\mathbf{u} \cdot \nabla \mathbf{u}=\left[\begin{matrix}\sum_{i=0}^I u_i\frac{\partial u_x }{\partial i} \\\sum_{i=0}^I u_i\frac{\partial u_y }{\partial i} \\\cdots\\\sum_{i=0}^I u_i\frac{\partial u_I }{\partial i} \\\end{matrix}\right]\)
This operator only works for vector fields with the same dimension as the mesh.
Note that this class is an operator wrapper. The real implementation of the source term is in the _ConvectionCore
class.
Source code in torchfsm/operator/generic/_convection.py
67 68 69 70 71 72 73 74 75 76 |
|
_state_dict
instance-attribute
¤
_state_dict = {
"f_mesh": None,
"n_channel": None,
"linear_coef": None,
"nonlinear_func": None,
"operator": None,
"integrator": None,
"invert_linear_coef": None,
}
_value_mesh_check_func
instance-attribute
¤
_value_mesh_check_func = lambda dim_value, dim_mesh: True
set_de_aliasing_rate
¤
set_de_aliasing_rate(de_aliasing_rate: float)
Set the de-aliasing rate for the nonlinear operator. Args: de_aliasing_rate (float): De-aliasing rate. Default is ⅔.
Source code in torchfsm/operator/_base.py
275 276 277 278 279 280 281 282 283 |
|
__radd__
¤
__radd__(other)
Source code in torchfsm/operator/_base.py
176 177 |
|
__iadd__
¤
__iadd__(other)
Source code in torchfsm/operator/_base.py
179 180 |
|
__sub__
¤
__sub__(other)
Source code in torchfsm/operator/_base.py
182 183 184 185 186 |
|
__rsub__
¤
__rsub__(other)
Source code in torchfsm/operator/_base.py
188 189 190 191 192 |
|
__isub__
¤
__isub__(other)
Source code in torchfsm/operator/_base.py
194 195 |
|
__rmul__
¤
__rmul__(other)
Source code in torchfsm/operator/_base.py
197 198 |
|
__imul__
¤
__imul__(other)
Source code in torchfsm/operator/_base.py
200 201 |
|
__truediv__
¤
__truediv__(other)
Source code in torchfsm/operator/_base.py
203 204 205 206 207 |
|
_build_linear_coefs
¤
_build_linear_coefs(
linear_coefs: Optional[Sequence[LinearCoef]],
)
Build the linear coefficients based on the provided linear coefficient generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
linear_coefs
|
Optional[Sequence[LinearCoef]]
|
List of linear coefficient generators. |
required |
Source code in torchfsm/operator/_base.py
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
|
_build_nonlinear_funcs
¤
_build_nonlinear_funcs(
nonlinear_funcs: Optional[Sequence[NonlinearFunc]],
)
Build the nonlinear functions based on the provided nonlinear function generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nonlinear_funcs
|
Optional[Sequence[NonlinearFunc]]
|
List of nonlinear function generators. |
required |
Source code in torchfsm/operator/_base.py
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
|
_build_operator
¤
_build_operator()
Build the operator based on the linear coefficient and nonlinear function. If both linear coefficient and nonlinear function are None, the operator is set to None.
Source code in torchfsm/operator/_base.py
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
|
_build_integrator
¤
_build_integrator(dt: float)
Build the integrator based on the provided time step and integrator type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dt
|
float
|
Time step for the integrator. |
required |
Source code in torchfsm/operator/_base.py
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
|
_pre_check
¤
_pre_check(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
] = None,
) -> Tuple[FourierMesh, int]
Pre-check the input tensor and mesh. If the mesh is not registered, register it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. Default is None. If None, the mesh registered in the operator will be used. |
None
|
Returns:
Type | Description |
---|---|
Tuple[FourierMesh, int]
|
Tuple[FourierMesh, int]: Tuple of Fourier mesh and number of channels. |
Source code in torchfsm/operator/_base.py
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
|
register_mesh
¤
register_mesh(
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
],
n_channel: int,
device=None,
dtype=None,
)
Register the mesh and number of channels for the operator. Once a mesh is registered, mesh information is not required for integration and operator call.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. |
required |
n_channel
|
int
|
Number of channels of the input tensor. |
required |
device
|
Optional[device]
|
Device to which the mesh should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the mesh. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
|
regisiter_additional_check
¤
regisiter_additional_check(
func: Callable[[int, int], bool]
)
Register an additional check function for the value and mesh compatibility.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
func
|
Callable[[int, int], bool]
|
Function that takes the dimension of the value and mesh as input and returns a boolean indicating whether they are compatible. |
required |
Source code in torchfsm/operator/_base.py
589 590 591 592 593 594 595 596 |
|
add_generator
¤
add_generator(generator: GeneratorLike, coef=1)
Add a generator to the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generator
|
GeneratorLike
|
Generator to be added. It should be a callable that takes a Fourier mesh and number of channels as input and returns a linear coefficient or nonlinear function. |
required |
coef
|
float
|
Coefficient for the generator. Default is 1. |
1
|
Source code in torchfsm/operator/_base.py
598 599 600 601 602 603 604 605 606 607 |
|
set_integrator
¤
set_integrator(
integrator: Union[
Literal["auto"], ETDRKIntegrator, RKIntegrator
],
**integrator_config
)
Set the integrator for the operator. The integrator is used for time integration of the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
integrator
|
Union[Literal['auto'], ETDRKIntegrator, RKIntegrator]
|
Integrator to be used. If "auto", the integrator will be chosen automatically based on the operator type. If "auto", the integrator will be set as ETDRKIntegrator.ETDRK0 for linear operators and ETDRKIntegrator.ETDRK4 for nonlinear operators. |
required |
**integrator_config
|
Additional configuration for the integrator. |
{}
|
Source code in torchfsm/operator/_base.py
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
|
integrate
¤
integrate(
u_0: Optional[torch.Tensor] = None,
u_0_fft: Optional[torch.Tensor] = None,
dt: float = 1,
step: int = 1,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
progressive: bool = False,
trajectory_recorder: Optional[_TrajRecorder] = None,
return_in_fourier: bool = False,
) -> Union[
SpatialTensor["B C H ..."],
SpatialTensor["B T C H ..."],
FourierTensor["B C H ..."],
FourierTensor["B T C H ..."],
]
Integrate the operator using the provided initial condition and time step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u_0
|
Optional[Tensor]
|
Initial condition in spatial domain. Default is None. |
None
|
u_0_fft
|
Optional[Tensor]
|
Initial condition in Fourier domain. Default is None. At least one of u_0 or u_0_fft should be provided. |
None
|
dt
|
float
|
Time step for the integrator. Default is 1. |
1
|
step
|
int
|
Number of time steps to integrate. Default is 1. |
1
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
progressive
|
bool
|
If True, show a progress bar during integration. Default is False. |
False
|
trajectory_recorder
|
Optional[_TrajRecorder]
|
Trajectory recorder for recording the trajectory during integration. Default is None. If None, no trajectory will be recorded. The function will only return the final frame. |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], SpatialTensor['B T C H ...'], FourierTensor['B C H ...'], FourierTensor['B T C H ...']]
|
Union[SpatialTensor["B C H ..."], SpatialTensor["B T C H ..."], FourierTensor["B C H ..."], FourierTensor["B T C H ..."]]: Integrated result in spatial or Fourier domain. If trajectory_recorder is provided, the result will be a trajectory tensor of shape (B, T, C, H, ...). Otherwise, the result will be a tensor of shape (B, C, H, ...). If return_in_fourier is True, the result will be in Fourier domain. Otherwise, it will be in spatial domain. |
Source code in torchfsm/operator/_base.py
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
|
__call__
¤
__call__(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
return_in_fourier=False,
) -> Union[
SpatialTensor["B C H ..."], FourierTensor["B C H ..."]
]
Call the operator with the provided input tensor. The operator will apply the linear coefficient and nonlinear function to the input tensor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], FourierTensor['B C H ...']]
|
Union[SpatialTensor["B C H ..."], FourierTensor["B C H ..."]]: Result of the operator in spatial or Fourier domain. |
Source code in torchfsm/operator/_base.py
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
|
to
¤
to(device=None, dtype=None)
Move the operator to the specified device and change the data type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device
|
Optional[device]
|
Device to which the operator should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the operator. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
743 744 745 746 747 748 749 750 751 752 753 |
|
__add__
¤
__add__(other)
Source code in torchfsm/operator/_base.py
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 |
|
__mul__
¤
__mul__(other)
Source code in torchfsm/operator/_base.py
929 930 931 932 933 934 935 |
|
__neg__
¤
__neg__()
Source code in torchfsm/operator/_base.py
937 938 939 940 |
|
__init__
¤
__init__() -> None
Source code in torchfsm/operator/generic/_convection.py
75 76 |
|
torchfsm.operator.Curl
¤
Bases: NonlinearOperator
Curl operator for 2D and 3D vector fields.
It is defined as: \(\nabla \times \mathbf{u} = \frac{\partial u_y}{\partial x}-\frac{\partial u_x}{\partial y}\)
for 2D vector field \(\mathbf{u} = (u_x, u_y)\) and
\(\nabla \times \mathbf{u} = \left[\begin{matrix} \frac{\partial u_z}{\partial y}-\frac{\partial u_y}{\partial z} \\ \frac{\partial u_x}{\partial z}-\frac{\partial u_z}{\partial x} \\ \frac{\partial u_y}{\partial x}-\frac{\partial u_x}{\partial y} \end{matrix} \right]\)
for 3D vector field \(\mathbf{u} = (u_x, u_y, u_z)\).
This operator only works for vector fields with the same dimension as the mesh.
Note that this class is an operator wrapper. The real implementation of the source term is in the _Curl2DCore
and _Curl2DCore
class.
Source code in torchfsm/operator/generic/_curl.py
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
|
_state_dict
instance-attribute
¤
_state_dict = {
"f_mesh": None,
"n_channel": None,
"linear_coef": None,
"nonlinear_func": None,
"operator": None,
"integrator": None,
"invert_linear_coef": None,
}
_value_mesh_check_func
instance-attribute
¤
_value_mesh_check_func = lambda dim_value, dim_mesh: True
set_de_aliasing_rate
¤
set_de_aliasing_rate(de_aliasing_rate: float)
Set the de-aliasing rate for the nonlinear operator. Args: de_aliasing_rate (float): De-aliasing rate. Default is ⅔.
Source code in torchfsm/operator/_base.py
275 276 277 278 279 280 281 282 283 |
|
__radd__
¤
__radd__(other)
Source code in torchfsm/operator/_base.py
176 177 |
|
__iadd__
¤
__iadd__(other)
Source code in torchfsm/operator/_base.py
179 180 |
|
__sub__
¤
__sub__(other)
Source code in torchfsm/operator/_base.py
182 183 184 185 186 |
|
__rsub__
¤
__rsub__(other)
Source code in torchfsm/operator/_base.py
188 189 190 191 192 |
|
__isub__
¤
__isub__(other)
Source code in torchfsm/operator/_base.py
194 195 |
|
__rmul__
¤
__rmul__(other)
Source code in torchfsm/operator/_base.py
197 198 |
|
__imul__
¤
__imul__(other)
Source code in torchfsm/operator/_base.py
200 201 |
|
__truediv__
¤
__truediv__(other)
Source code in torchfsm/operator/_base.py
203 204 205 206 207 |
|
_build_linear_coefs
¤
_build_linear_coefs(
linear_coefs: Optional[Sequence[LinearCoef]],
)
Build the linear coefficients based on the provided linear coefficient generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
linear_coefs
|
Optional[Sequence[LinearCoef]]
|
List of linear coefficient generators. |
required |
Source code in torchfsm/operator/_base.py
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
|
_build_nonlinear_funcs
¤
_build_nonlinear_funcs(
nonlinear_funcs: Optional[Sequence[NonlinearFunc]],
)
Build the nonlinear functions based on the provided nonlinear function generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nonlinear_funcs
|
Optional[Sequence[NonlinearFunc]]
|
List of nonlinear function generators. |
required |
Source code in torchfsm/operator/_base.py
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
|
_build_operator
¤
_build_operator()
Build the operator based on the linear coefficient and nonlinear function. If both linear coefficient and nonlinear function are None, the operator is set to None.
Source code in torchfsm/operator/_base.py
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
|
_build_integrator
¤
_build_integrator(dt: float)
Build the integrator based on the provided time step and integrator type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dt
|
float
|
Time step for the integrator. |
required |
Source code in torchfsm/operator/_base.py
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
|
_pre_check
¤
_pre_check(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
] = None,
) -> Tuple[FourierMesh, int]
Pre-check the input tensor and mesh. If the mesh is not registered, register it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. Default is None. If None, the mesh registered in the operator will be used. |
None
|
Returns:
Type | Description |
---|---|
Tuple[FourierMesh, int]
|
Tuple[FourierMesh, int]: Tuple of Fourier mesh and number of channels. |
Source code in torchfsm/operator/_base.py
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
|
register_mesh
¤
register_mesh(
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
],
n_channel: int,
device=None,
dtype=None,
)
Register the mesh and number of channels for the operator. Once a mesh is registered, mesh information is not required for integration and operator call.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. |
required |
n_channel
|
int
|
Number of channels of the input tensor. |
required |
device
|
Optional[device]
|
Device to which the mesh should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the mesh. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
|
regisiter_additional_check
¤
regisiter_additional_check(
func: Callable[[int, int], bool]
)
Register an additional check function for the value and mesh compatibility.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
func
|
Callable[[int, int], bool]
|
Function that takes the dimension of the value and mesh as input and returns a boolean indicating whether they are compatible. |
required |
Source code in torchfsm/operator/_base.py
589 590 591 592 593 594 595 596 |
|
add_generator
¤
add_generator(generator: GeneratorLike, coef=1)
Add a generator to the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generator
|
GeneratorLike
|
Generator to be added. It should be a callable that takes a Fourier mesh and number of channels as input and returns a linear coefficient or nonlinear function. |
required |
coef
|
float
|
Coefficient for the generator. Default is 1. |
1
|
Source code in torchfsm/operator/_base.py
598 599 600 601 602 603 604 605 606 607 |
|
set_integrator
¤
set_integrator(
integrator: Union[
Literal["auto"], ETDRKIntegrator, RKIntegrator
],
**integrator_config
)
Set the integrator for the operator. The integrator is used for time integration of the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
integrator
|
Union[Literal['auto'], ETDRKIntegrator, RKIntegrator]
|
Integrator to be used. If "auto", the integrator will be chosen automatically based on the operator type. If "auto", the integrator will be set as ETDRKIntegrator.ETDRK0 for linear operators and ETDRKIntegrator.ETDRK4 for nonlinear operators. |
required |
**integrator_config
|
Additional configuration for the integrator. |
{}
|
Source code in torchfsm/operator/_base.py
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
|
integrate
¤
integrate(
u_0: Optional[torch.Tensor] = None,
u_0_fft: Optional[torch.Tensor] = None,
dt: float = 1,
step: int = 1,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
progressive: bool = False,
trajectory_recorder: Optional[_TrajRecorder] = None,
return_in_fourier: bool = False,
) -> Union[
SpatialTensor["B C H ..."],
SpatialTensor["B T C H ..."],
FourierTensor["B C H ..."],
FourierTensor["B T C H ..."],
]
Integrate the operator using the provided initial condition and time step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u_0
|
Optional[Tensor]
|
Initial condition in spatial domain. Default is None. |
None
|
u_0_fft
|
Optional[Tensor]
|
Initial condition in Fourier domain. Default is None. At least one of u_0 or u_0_fft should be provided. |
None
|
dt
|
float
|
Time step for the integrator. Default is 1. |
1
|
step
|
int
|
Number of time steps to integrate. Default is 1. |
1
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
progressive
|
bool
|
If True, show a progress bar during integration. Default is False. |
False
|
trajectory_recorder
|
Optional[_TrajRecorder]
|
Trajectory recorder for recording the trajectory during integration. Default is None. If None, no trajectory will be recorded. The function will only return the final frame. |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], SpatialTensor['B T C H ...'], FourierTensor['B C H ...'], FourierTensor['B T C H ...']]
|
Union[SpatialTensor["B C H ..."], SpatialTensor["B T C H ..."], FourierTensor["B C H ..."], FourierTensor["B T C H ..."]]: Integrated result in spatial or Fourier domain. If trajectory_recorder is provided, the result will be a trajectory tensor of shape (B, T, C, H, ...). Otherwise, the result will be a tensor of shape (B, C, H, ...). If return_in_fourier is True, the result will be in Fourier domain. Otherwise, it will be in spatial domain. |
Source code in torchfsm/operator/_base.py
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
|
__call__
¤
__call__(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
return_in_fourier=False,
) -> Union[
SpatialTensor["B C H ..."], FourierTensor["B C H ..."]
]
Call the operator with the provided input tensor. The operator will apply the linear coefficient and nonlinear function to the input tensor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], FourierTensor['B C H ...']]
|
Union[SpatialTensor["B C H ..."], FourierTensor["B C H ..."]]: Result of the operator in spatial or Fourier domain. |
Source code in torchfsm/operator/_base.py
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
|
to
¤
to(device=None, dtype=None)
Move the operator to the specified device and change the data type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device
|
Optional[device]
|
Device to which the operator should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the operator. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
743 744 745 746 747 748 749 750 751 752 753 |
|
__add__
¤
__add__(other)
Source code in torchfsm/operator/_base.py
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 |
|
__mul__
¤
__mul__(other)
Source code in torchfsm/operator/_base.py
929 930 931 932 933 934 935 |
|
__neg__
¤
__neg__()
Source code in torchfsm/operator/_base.py
937 938 939 940 |
|
__init__
¤
__init__() -> None
Source code in torchfsm/operator/generic/_curl.py
92 93 |
|
torchfsm.operator.Div
¤
Bases: NonlinearOperator
Div
calculates the divergence of a vector field.
It is defined as\(\nabla \cdot \mathbf{u} = \sum_i \frac{\partial u_i}{\partial i}\).
This operator only works for vector fields with the same dimension as the mesh.
Note that this class is an operator wrapper. The actual implementation of the operator is in the _DivCore
class.
Source code in torchfsm/operator/generic/_div.py
43 44 45 46 47 48 49 50 51 52 53 |
|
_state_dict
instance-attribute
¤
_state_dict = {
"f_mesh": None,
"n_channel": None,
"linear_coef": None,
"nonlinear_func": None,
"operator": None,
"integrator": None,
"invert_linear_coef": None,
}
_value_mesh_check_func
instance-attribute
¤
_value_mesh_check_func = lambda dim_value, dim_mesh: True
set_de_aliasing_rate
¤
set_de_aliasing_rate(de_aliasing_rate: float)
Set the de-aliasing rate for the nonlinear operator. Args: de_aliasing_rate (float): De-aliasing rate. Default is ⅔.
Source code in torchfsm/operator/_base.py
275 276 277 278 279 280 281 282 283 |
|
__radd__
¤
__radd__(other)
Source code in torchfsm/operator/_base.py
176 177 |
|
__iadd__
¤
__iadd__(other)
Source code in torchfsm/operator/_base.py
179 180 |
|
__sub__
¤
__sub__(other)
Source code in torchfsm/operator/_base.py
182 183 184 185 186 |
|
__rsub__
¤
__rsub__(other)
Source code in torchfsm/operator/_base.py
188 189 190 191 192 |
|
__isub__
¤
__isub__(other)
Source code in torchfsm/operator/_base.py
194 195 |
|
__rmul__
¤
__rmul__(other)
Source code in torchfsm/operator/_base.py
197 198 |
|
__imul__
¤
__imul__(other)
Source code in torchfsm/operator/_base.py
200 201 |
|
__truediv__
¤
__truediv__(other)
Source code in torchfsm/operator/_base.py
203 204 205 206 207 |
|
_build_linear_coefs
¤
_build_linear_coefs(
linear_coefs: Optional[Sequence[LinearCoef]],
)
Build the linear coefficients based on the provided linear coefficient generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
linear_coefs
|
Optional[Sequence[LinearCoef]]
|
List of linear coefficient generators. |
required |
Source code in torchfsm/operator/_base.py
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
|
_build_nonlinear_funcs
¤
_build_nonlinear_funcs(
nonlinear_funcs: Optional[Sequence[NonlinearFunc]],
)
Build the nonlinear functions based on the provided nonlinear function generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nonlinear_funcs
|
Optional[Sequence[NonlinearFunc]]
|
List of nonlinear function generators. |
required |
Source code in torchfsm/operator/_base.py
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
|
_build_operator
¤
_build_operator()
Build the operator based on the linear coefficient and nonlinear function. If both linear coefficient and nonlinear function are None, the operator is set to None.
Source code in torchfsm/operator/_base.py
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
|
_build_integrator
¤
_build_integrator(dt: float)
Build the integrator based on the provided time step and integrator type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dt
|
float
|
Time step for the integrator. |
required |
Source code in torchfsm/operator/_base.py
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
|
_pre_check
¤
_pre_check(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
] = None,
) -> Tuple[FourierMesh, int]
Pre-check the input tensor and mesh. If the mesh is not registered, register it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. Default is None. If None, the mesh registered in the operator will be used. |
None
|
Returns:
Type | Description |
---|---|
Tuple[FourierMesh, int]
|
Tuple[FourierMesh, int]: Tuple of Fourier mesh and number of channels. |
Source code in torchfsm/operator/_base.py
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
|
register_mesh
¤
register_mesh(
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
],
n_channel: int,
device=None,
dtype=None,
)
Register the mesh and number of channels for the operator. Once a mesh is registered, mesh information is not required for integration and operator call.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. |
required |
n_channel
|
int
|
Number of channels of the input tensor. |
required |
device
|
Optional[device]
|
Device to which the mesh should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the mesh. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
|
regisiter_additional_check
¤
regisiter_additional_check(
func: Callable[[int, int], bool]
)
Register an additional check function for the value and mesh compatibility.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
func
|
Callable[[int, int], bool]
|
Function that takes the dimension of the value and mesh as input and returns a boolean indicating whether they are compatible. |
required |
Source code in torchfsm/operator/_base.py
589 590 591 592 593 594 595 596 |
|
add_generator
¤
add_generator(generator: GeneratorLike, coef=1)
Add a generator to the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generator
|
GeneratorLike
|
Generator to be added. It should be a callable that takes a Fourier mesh and number of channels as input and returns a linear coefficient or nonlinear function. |
required |
coef
|
float
|
Coefficient for the generator. Default is 1. |
1
|
Source code in torchfsm/operator/_base.py
598 599 600 601 602 603 604 605 606 607 |
|
set_integrator
¤
set_integrator(
integrator: Union[
Literal["auto"], ETDRKIntegrator, RKIntegrator
],
**integrator_config
)
Set the integrator for the operator. The integrator is used for time integration of the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
integrator
|
Union[Literal['auto'], ETDRKIntegrator, RKIntegrator]
|
Integrator to be used. If "auto", the integrator will be chosen automatically based on the operator type. If "auto", the integrator will be set as ETDRKIntegrator.ETDRK0 for linear operators and ETDRKIntegrator.ETDRK4 for nonlinear operators. |
required |
**integrator_config
|
Additional configuration for the integrator. |
{}
|
Source code in torchfsm/operator/_base.py
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
|
integrate
¤
integrate(
u_0: Optional[torch.Tensor] = None,
u_0_fft: Optional[torch.Tensor] = None,
dt: float = 1,
step: int = 1,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
progressive: bool = False,
trajectory_recorder: Optional[_TrajRecorder] = None,
return_in_fourier: bool = False,
) -> Union[
SpatialTensor["B C H ..."],
SpatialTensor["B T C H ..."],
FourierTensor["B C H ..."],
FourierTensor["B T C H ..."],
]
Integrate the operator using the provided initial condition and time step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u_0
|
Optional[Tensor]
|
Initial condition in spatial domain. Default is None. |
None
|
u_0_fft
|
Optional[Tensor]
|
Initial condition in Fourier domain. Default is None. At least one of u_0 or u_0_fft should be provided. |
None
|
dt
|
float
|
Time step for the integrator. Default is 1. |
1
|
step
|
int
|
Number of time steps to integrate. Default is 1. |
1
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
progressive
|
bool
|
If True, show a progress bar during integration. Default is False. |
False
|
trajectory_recorder
|
Optional[_TrajRecorder]
|
Trajectory recorder for recording the trajectory during integration. Default is None. If None, no trajectory will be recorded. The function will only return the final frame. |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], SpatialTensor['B T C H ...'], FourierTensor['B C H ...'], FourierTensor['B T C H ...']]
|
Union[SpatialTensor["B C H ..."], SpatialTensor["B T C H ..."], FourierTensor["B C H ..."], FourierTensor["B T C H ..."]]: Integrated result in spatial or Fourier domain. If trajectory_recorder is provided, the result will be a trajectory tensor of shape (B, T, C, H, ...). Otherwise, the result will be a tensor of shape (B, C, H, ...). If return_in_fourier is True, the result will be in Fourier domain. Otherwise, it will be in spatial domain. |
Source code in torchfsm/operator/_base.py
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
|
__call__
¤
__call__(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
return_in_fourier=False,
) -> Union[
SpatialTensor["B C H ..."], FourierTensor["B C H ..."]
]
Call the operator with the provided input tensor. The operator will apply the linear coefficient and nonlinear function to the input tensor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], FourierTensor['B C H ...']]
|
Union[SpatialTensor["B C H ..."], FourierTensor["B C H ..."]]: Result of the operator in spatial or Fourier domain. |
Source code in torchfsm/operator/_base.py
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
|
to
¤
to(device=None, dtype=None)
Move the operator to the specified device and change the data type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device
|
Optional[device]
|
Device to which the operator should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the operator. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
743 744 745 746 747 748 749 750 751 752 753 |
|
__add__
¤
__add__(other)
Source code in torchfsm/operator/_base.py
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 |
|
__mul__
¤
__mul__(other)
Source code in torchfsm/operator/_base.py
929 930 931 932 933 934 935 |
|
__neg__
¤
__neg__()
Source code in torchfsm/operator/_base.py
937 938 939 940 |
|
__init__
¤
__init__() -> None
Source code in torchfsm/operator/generic/_div.py
52 53 |
|
torchfsm.operator.Grad
¤
Bases: LinearOperator
Grad
calculates the spatial gradient of a scalar field.
It is defined as \(\nabla p = \left[\begin{matrix}\frac{\partial p}{\partial x} \\\frac{\partial p}{\partial y} \\\cdots \\\frac{\partial p}{\partial i} \\\end{matrix}\right]\)
Note that this class is an operator wrapper. The actual implementation of the operator is in the _GradCore
class.
Source code in torchfsm/operator/generic/_grad.py
30 31 32 33 34 35 36 37 38 |
|
_state_dict
instance-attribute
¤
_state_dict = {
"f_mesh": None,
"n_channel": None,
"linear_coef": None,
"nonlinear_func": None,
"operator": None,
"integrator": None,
"invert_linear_coef": None,
}
_value_mesh_check_func
instance-attribute
¤
_value_mesh_check_func = lambda dim_value, dim_mesh: True
register_mesh
¤
register_mesh(
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
],
n_channel: int,
device=None,
dtype=None,
)
Register the mesh and number of channels for the operator. Once a mesh is registered, mesh information is not required for integration and operator call.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. |
required |
n_channel
|
int
|
Number of channels of the input tensor. |
required |
device
|
Optional[device]
|
Device to which the mesh should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the mesh. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
|
solve
¤
solve(
b: Optional[torch.Tensor] = None,
b_fft: Optional[torch.Tensor] = None,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
n_channel: Optional[int] = None,
return_in_fourier=False,
) -> Union[
SpatialTensor["B C H ..."], SpatialTensor["B C H ..."]
]
Solve the linear operator equation \(Ax = b\), where \(A\) is the linear operator and \(b\) is the right-hand side.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
b
|
Optional[Tensor]
|
Right-hand side tensor in spatial domain. If None, b_fft should be provided. |
None
|
b_fft
|
Optional[Tensor]
|
Right-hand side tensor in Fourier domain. If None, b should be provided. |
None
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. If None, the mesh registered in the operator will be used. |
None
|
n_channel
|
Optional[int]
|
Number of channels of \(x\). If None, the number of channels registered in the operator will be used. |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], SpatialTensor['B C H ...']]
|
Union[SpatialTensor["B C H ..."], FourierTensor["B C H ..."]]: Solution tensor in spatial or Fourier domain. |
Source code in torchfsm/operator/_base.py
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
|
__radd__
¤
__radd__(other)
Source code in torchfsm/operator/_base.py
176 177 |
|
__iadd__
¤
__iadd__(other)
Source code in torchfsm/operator/_base.py
179 180 |
|
__sub__
¤
__sub__(other)
Source code in torchfsm/operator/_base.py
182 183 184 185 186 |
|
__rsub__
¤
__rsub__(other)
Source code in torchfsm/operator/_base.py
188 189 190 191 192 |
|
__isub__
¤
__isub__(other)
Source code in torchfsm/operator/_base.py
194 195 |
|
__rmul__
¤
__rmul__(other)
Source code in torchfsm/operator/_base.py
197 198 |
|
__imul__
¤
__imul__(other)
Source code in torchfsm/operator/_base.py
200 201 |
|
__truediv__
¤
__truediv__(other)
Source code in torchfsm/operator/_base.py
203 204 205 206 207 |
|
_build_linear_coefs
¤
_build_linear_coefs(
linear_coefs: Optional[Sequence[LinearCoef]],
)
Build the linear coefficients based on the provided linear coefficient generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
linear_coefs
|
Optional[Sequence[LinearCoef]]
|
List of linear coefficient generators. |
required |
Source code in torchfsm/operator/_base.py
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
|
_build_nonlinear_funcs
¤
_build_nonlinear_funcs(
nonlinear_funcs: Optional[Sequence[NonlinearFunc]],
)
Build the nonlinear functions based on the provided nonlinear function generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nonlinear_funcs
|
Optional[Sequence[NonlinearFunc]]
|
List of nonlinear function generators. |
required |
Source code in torchfsm/operator/_base.py
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
|
_build_operator
¤
_build_operator()
Build the operator based on the linear coefficient and nonlinear function. If both linear coefficient and nonlinear function are None, the operator is set to None.
Source code in torchfsm/operator/_base.py
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
|
_build_integrator
¤
_build_integrator(dt: float)
Build the integrator based on the provided time step and integrator type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dt
|
float
|
Time step for the integrator. |
required |
Source code in torchfsm/operator/_base.py
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
|
_pre_check
¤
_pre_check(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
] = None,
) -> Tuple[FourierMesh, int]
Pre-check the input tensor and mesh. If the mesh is not registered, register it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. Default is None. If None, the mesh registered in the operator will be used. |
None
|
Returns:
Type | Description |
---|---|
Tuple[FourierMesh, int]
|
Tuple[FourierMesh, int]: Tuple of Fourier mesh and number of channels. |
Source code in torchfsm/operator/_base.py
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
|
regisiter_additional_check
¤
regisiter_additional_check(
func: Callable[[int, int], bool]
)
Register an additional check function for the value and mesh compatibility.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
func
|
Callable[[int, int], bool]
|
Function that takes the dimension of the value and mesh as input and returns a boolean indicating whether they are compatible. |
required |
Source code in torchfsm/operator/_base.py
589 590 591 592 593 594 595 596 |
|
add_generator
¤
add_generator(generator: GeneratorLike, coef=1)
Add a generator to the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generator
|
GeneratorLike
|
Generator to be added. It should be a callable that takes a Fourier mesh and number of channels as input and returns a linear coefficient or nonlinear function. |
required |
coef
|
float
|
Coefficient for the generator. Default is 1. |
1
|
Source code in torchfsm/operator/_base.py
598 599 600 601 602 603 604 605 606 607 |
|
set_integrator
¤
set_integrator(
integrator: Union[
Literal["auto"], ETDRKIntegrator, RKIntegrator
],
**integrator_config
)
Set the integrator for the operator. The integrator is used for time integration of the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
integrator
|
Union[Literal['auto'], ETDRKIntegrator, RKIntegrator]
|
Integrator to be used. If "auto", the integrator will be chosen automatically based on the operator type. If "auto", the integrator will be set as ETDRKIntegrator.ETDRK0 for linear operators and ETDRKIntegrator.ETDRK4 for nonlinear operators. |
required |
**integrator_config
|
Additional configuration for the integrator. |
{}
|
Source code in torchfsm/operator/_base.py
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
|
integrate
¤
integrate(
u_0: Optional[torch.Tensor] = None,
u_0_fft: Optional[torch.Tensor] = None,
dt: float = 1,
step: int = 1,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
progressive: bool = False,
trajectory_recorder: Optional[_TrajRecorder] = None,
return_in_fourier: bool = False,
) -> Union[
SpatialTensor["B C H ..."],
SpatialTensor["B T C H ..."],
FourierTensor["B C H ..."],
FourierTensor["B T C H ..."],
]
Integrate the operator using the provided initial condition and time step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u_0
|
Optional[Tensor]
|
Initial condition in spatial domain. Default is None. |
None
|
u_0_fft
|
Optional[Tensor]
|
Initial condition in Fourier domain. Default is None. At least one of u_0 or u_0_fft should be provided. |
None
|
dt
|
float
|
Time step for the integrator. Default is 1. |
1
|
step
|
int
|
Number of time steps to integrate. Default is 1. |
1
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
progressive
|
bool
|
If True, show a progress bar during integration. Default is False. |
False
|
trajectory_recorder
|
Optional[_TrajRecorder]
|
Trajectory recorder for recording the trajectory during integration. Default is None. If None, no trajectory will be recorded. The function will only return the final frame. |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], SpatialTensor['B T C H ...'], FourierTensor['B C H ...'], FourierTensor['B T C H ...']]
|
Union[SpatialTensor["B C H ..."], SpatialTensor["B T C H ..."], FourierTensor["B C H ..."], FourierTensor["B T C H ..."]]: Integrated result in spatial or Fourier domain. If trajectory_recorder is provided, the result will be a trajectory tensor of shape (B, T, C, H, ...). Otherwise, the result will be a tensor of shape (B, C, H, ...). If return_in_fourier is True, the result will be in Fourier domain. Otherwise, it will be in spatial domain. |
Source code in torchfsm/operator/_base.py
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
|
__call__
¤
__call__(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
return_in_fourier=False,
) -> Union[
SpatialTensor["B C H ..."], FourierTensor["B C H ..."]
]
Call the operator with the provided input tensor. The operator will apply the linear coefficient and nonlinear function to the input tensor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], FourierTensor['B C H ...']]
|
Union[SpatialTensor["B C H ..."], FourierTensor["B C H ..."]]: Result of the operator in spatial or Fourier domain. |
Source code in torchfsm/operator/_base.py
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
|
to
¤
to(device=None, dtype=None)
Move the operator to the specified device and change the data type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device
|
Optional[device]
|
Device to which the operator should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the operator. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
743 744 745 746 747 748 749 750 751 752 753 |
|
__add__
¤
__add__(other)
Source code in torchfsm/operator/_base.py
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 |
|
__mul__
¤
__mul__(other)
Source code in torchfsm/operator/_base.py
859 860 861 862 863 864 865 |
|
__neg__
¤
__neg__()
Source code in torchfsm/operator/_base.py
867 868 869 870 |
|
__init__
¤
__init__() -> None
Source code in torchfsm/operator/generic/_grad.py
37 38 |
|
torchfsm.operator.ExplicitSource
¤
Bases: NonlinearOperator
Explicit source term for the operator. This class is used to represent an explicit source term in the operator. Note that this class is an operator wrapper. The real implementation of the source term is in the _ExplicitSourceCore class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
source
|
Tensor
|
Source term in spatial domain. This is a tensor that represents the source term in the spatial domain. |
required |
Source code in torchfsm/operator/_base.py
971 972 973 974 975 976 977 978 979 980 981 982 |
|
_state_dict
instance-attribute
¤
_state_dict = {
"f_mesh": None,
"n_channel": None,
"linear_coef": None,
"nonlinear_func": None,
"operator": None,
"integrator": None,
"invert_linear_coef": None,
}
_value_mesh_check_func
instance-attribute
¤
_value_mesh_check_func = lambda dim_value, dim_mesh: True
set_de_aliasing_rate
¤
set_de_aliasing_rate(de_aliasing_rate: float)
Set the de-aliasing rate for the nonlinear operator. Args: de_aliasing_rate (float): De-aliasing rate. Default is ⅔.
Source code in torchfsm/operator/_base.py
275 276 277 278 279 280 281 282 283 |
|
__radd__
¤
__radd__(other)
Source code in torchfsm/operator/_base.py
176 177 |
|
__iadd__
¤
__iadd__(other)
Source code in torchfsm/operator/_base.py
179 180 |
|
__sub__
¤
__sub__(other)
Source code in torchfsm/operator/_base.py
182 183 184 185 186 |
|
__rsub__
¤
__rsub__(other)
Source code in torchfsm/operator/_base.py
188 189 190 191 192 |
|
__isub__
¤
__isub__(other)
Source code in torchfsm/operator/_base.py
194 195 |
|
__rmul__
¤
__rmul__(other)
Source code in torchfsm/operator/_base.py
197 198 |
|
__imul__
¤
__imul__(other)
Source code in torchfsm/operator/_base.py
200 201 |
|
__truediv__
¤
__truediv__(other)
Source code in torchfsm/operator/_base.py
203 204 205 206 207 |
|
_build_linear_coefs
¤
_build_linear_coefs(
linear_coefs: Optional[Sequence[LinearCoef]],
)
Build the linear coefficients based on the provided linear coefficient generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
linear_coefs
|
Optional[Sequence[LinearCoef]]
|
List of linear coefficient generators. |
required |
Source code in torchfsm/operator/_base.py
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
|
_build_nonlinear_funcs
¤
_build_nonlinear_funcs(
nonlinear_funcs: Optional[Sequence[NonlinearFunc]],
)
Build the nonlinear functions based on the provided nonlinear function generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nonlinear_funcs
|
Optional[Sequence[NonlinearFunc]]
|
List of nonlinear function generators. |
required |
Source code in torchfsm/operator/_base.py
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
|
_build_operator
¤
_build_operator()
Build the operator based on the linear coefficient and nonlinear function. If both linear coefficient and nonlinear function are None, the operator is set to None.
Source code in torchfsm/operator/_base.py
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
|
_build_integrator
¤
_build_integrator(dt: float)
Build the integrator based on the provided time step and integrator type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dt
|
float
|
Time step for the integrator. |
required |
Source code in torchfsm/operator/_base.py
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
|
_pre_check
¤
_pre_check(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
] = None,
) -> Tuple[FourierMesh, int]
Pre-check the input tensor and mesh. If the mesh is not registered, register it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. Default is None. If None, the mesh registered in the operator will be used. |
None
|
Returns:
Type | Description |
---|---|
Tuple[FourierMesh, int]
|
Tuple[FourierMesh, int]: Tuple of Fourier mesh and number of channels. |
Source code in torchfsm/operator/_base.py
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
|
register_mesh
¤
register_mesh(
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
],
n_channel: int,
device=None,
dtype=None,
)
Register the mesh and number of channels for the operator. Once a mesh is registered, mesh information is not required for integration and operator call.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. |
required |
n_channel
|
int
|
Number of channels of the input tensor. |
required |
device
|
Optional[device]
|
Device to which the mesh should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the mesh. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
|
regisiter_additional_check
¤
regisiter_additional_check(
func: Callable[[int, int], bool]
)
Register an additional check function for the value and mesh compatibility.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
func
|
Callable[[int, int], bool]
|
Function that takes the dimension of the value and mesh as input and returns a boolean indicating whether they are compatible. |
required |
Source code in torchfsm/operator/_base.py
589 590 591 592 593 594 595 596 |
|
add_generator
¤
add_generator(generator: GeneratorLike, coef=1)
Add a generator to the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generator
|
GeneratorLike
|
Generator to be added. It should be a callable that takes a Fourier mesh and number of channels as input and returns a linear coefficient or nonlinear function. |
required |
coef
|
float
|
Coefficient for the generator. Default is 1. |
1
|
Source code in torchfsm/operator/_base.py
598 599 600 601 602 603 604 605 606 607 |
|
set_integrator
¤
set_integrator(
integrator: Union[
Literal["auto"], ETDRKIntegrator, RKIntegrator
],
**integrator_config
)
Set the integrator for the operator. The integrator is used for time integration of the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
integrator
|
Union[Literal['auto'], ETDRKIntegrator, RKIntegrator]
|
Integrator to be used. If "auto", the integrator will be chosen automatically based on the operator type. If "auto", the integrator will be set as ETDRKIntegrator.ETDRK0 for linear operators and ETDRKIntegrator.ETDRK4 for nonlinear operators. |
required |
**integrator_config
|
Additional configuration for the integrator. |
{}
|
Source code in torchfsm/operator/_base.py
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
|
integrate
¤
integrate(
u_0: Optional[torch.Tensor] = None,
u_0_fft: Optional[torch.Tensor] = None,
dt: float = 1,
step: int = 1,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
progressive: bool = False,
trajectory_recorder: Optional[_TrajRecorder] = None,
return_in_fourier: bool = False,
) -> Union[
SpatialTensor["B C H ..."],
SpatialTensor["B T C H ..."],
FourierTensor["B C H ..."],
FourierTensor["B T C H ..."],
]
Integrate the operator using the provided initial condition and time step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u_0
|
Optional[Tensor]
|
Initial condition in spatial domain. Default is None. |
None
|
u_0_fft
|
Optional[Tensor]
|
Initial condition in Fourier domain. Default is None. At least one of u_0 or u_0_fft should be provided. |
None
|
dt
|
float
|
Time step for the integrator. Default is 1. |
1
|
step
|
int
|
Number of time steps to integrate. Default is 1. |
1
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
progressive
|
bool
|
If True, show a progress bar during integration. Default is False. |
False
|
trajectory_recorder
|
Optional[_TrajRecorder]
|
Trajectory recorder for recording the trajectory during integration. Default is None. If None, no trajectory will be recorded. The function will only return the final frame. |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], SpatialTensor['B T C H ...'], FourierTensor['B C H ...'], FourierTensor['B T C H ...']]
|
Union[SpatialTensor["B C H ..."], SpatialTensor["B T C H ..."], FourierTensor["B C H ..."], FourierTensor["B T C H ..."]]: Integrated result in spatial or Fourier domain. If trajectory_recorder is provided, the result will be a trajectory tensor of shape (B, T, C, H, ...). Otherwise, the result will be a tensor of shape (B, C, H, ...). If return_in_fourier is True, the result will be in Fourier domain. Otherwise, it will be in spatial domain. |
Source code in torchfsm/operator/_base.py
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
|
__call__
¤
__call__(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
return_in_fourier=False,
) -> Union[
SpatialTensor["B C H ..."], FourierTensor["B C H ..."]
]
Call the operator with the provided input tensor. The operator will apply the linear coefficient and nonlinear function to the input tensor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], FourierTensor['B C H ...']]
|
Union[SpatialTensor["B C H ..."], FourierTensor["B C H ..."]]: Result of the operator in spatial or Fourier domain. |
Source code in torchfsm/operator/_base.py
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
|
to
¤
to(device=None, dtype=None)
Move the operator to the specified device and change the data type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device
|
Optional[device]
|
Device to which the operator should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the operator. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
743 744 745 746 747 748 749 750 751 752 753 |
|
__add__
¤
__add__(other)
Source code in torchfsm/operator/_base.py
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 |
|
__mul__
¤
__mul__(other)
Source code in torchfsm/operator/_base.py
929 930 931 932 933 934 935 |
|
__neg__
¤
__neg__()
Source code in torchfsm/operator/_base.py
937 938 939 940 |
|
__init__
¤
__init__(source: torch.Tensor) -> None
Source code in torchfsm/operator/_base.py
981 982 |
|
torchfsm.operator.ImplicitSource
¤
Bases: Operator
ImplicitSource
allows to define a source term in the implicit form.
Note that this class is an operator wrapper. The actual implementation of the operator is in the _ImplicitFuncSourceCore
class and _ImplicitUnitSourceCore
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
source_func
|
Callable[[Tensor], Tensor]
|
The f(x) function to be used as the source term. This function is used to define the source term in the implicit form. If None, the source term will be set to the unknown variable itself, i.e., f(x) = x. |
None
|
non_linear
|
bool
|
If True, the source term is treated as a nonlinear function. If False, it is treated as a linear function. Default is True. This actually controls whether the operator wil use the dealiased version of unknown variable for the source term. If the source term is a nonlinear function, the dealiased version of the unknown variable will be used. |
True
|
Source code in torchfsm/operator/generic/_source.py
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
|
_state_dict
instance-attribute
¤
_state_dict = {
"f_mesh": None,
"n_channel": None,
"linear_coef": None,
"nonlinear_func": None,
"operator": None,
"integrator": None,
"invert_linear_coef": None,
}
_value_mesh_check_func
instance-attribute
¤
_value_mesh_check_func = lambda dim_value, dim_mesh: True
is_linear
property
¤
is_linear: bool
Check if the operator is linear.
Returns:
Name | Type | Description |
---|---|---|
bool |
bool
|
True if the operator is linear, False otherwise. |
set_de_aliasing_rate
¤
set_de_aliasing_rate(de_aliasing_rate: float)
Set the de-aliasing rate for the nonlinear operator. Args: de_aliasing_rate (float): De-aliasing rate. Default is ⅔.
Source code in torchfsm/operator/_base.py
275 276 277 278 279 280 281 282 283 |
|
__radd__
¤
__radd__(other)
Source code in torchfsm/operator/_base.py
176 177 |
|
__iadd__
¤
__iadd__(other)
Source code in torchfsm/operator/_base.py
179 180 |
|
__sub__
¤
__sub__(other)
Source code in torchfsm/operator/_base.py
182 183 184 185 186 |
|
__rsub__
¤
__rsub__(other)
Source code in torchfsm/operator/_base.py
188 189 190 191 192 |
|
__isub__
¤
__isub__(other)
Source code in torchfsm/operator/_base.py
194 195 |
|
__rmul__
¤
__rmul__(other)
Source code in torchfsm/operator/_base.py
197 198 |
|
__imul__
¤
__imul__(other)
Source code in torchfsm/operator/_base.py
200 201 |
|
__truediv__
¤
__truediv__(other)
Source code in torchfsm/operator/_base.py
203 204 205 206 207 |
|
_build_linear_coefs
¤
_build_linear_coefs(
linear_coefs: Optional[Sequence[LinearCoef]],
)
Build the linear coefficients based on the provided linear coefficient generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
linear_coefs
|
Optional[Sequence[LinearCoef]]
|
List of linear coefficient generators. |
required |
Source code in torchfsm/operator/_base.py
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
|
_build_nonlinear_funcs
¤
_build_nonlinear_funcs(
nonlinear_funcs: Optional[Sequence[NonlinearFunc]],
)
Build the nonlinear functions based on the provided nonlinear function generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nonlinear_funcs
|
Optional[Sequence[NonlinearFunc]]
|
List of nonlinear function generators. |
required |
Source code in torchfsm/operator/_base.py
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
|
_build_operator
¤
_build_operator()
Build the operator based on the linear coefficient and nonlinear function. If both linear coefficient and nonlinear function are None, the operator is set to None.
Source code in torchfsm/operator/_base.py
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
|
_build_integrator
¤
_build_integrator(dt: float)
Build the integrator based on the provided time step and integrator type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dt
|
float
|
Time step for the integrator. |
required |
Source code in torchfsm/operator/_base.py
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
|
_pre_check
¤
_pre_check(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
] = None,
) -> Tuple[FourierMesh, int]
Pre-check the input tensor and mesh. If the mesh is not registered, register it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. Default is None. If None, the mesh registered in the operator will be used. |
None
|
Returns:
Type | Description |
---|---|
Tuple[FourierMesh, int]
|
Tuple[FourierMesh, int]: Tuple of Fourier mesh and number of channels. |
Source code in torchfsm/operator/_base.py
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
|
register_mesh
¤
register_mesh(
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
],
n_channel: int,
device=None,
dtype=None,
)
Register the mesh and number of channels for the operator. Once a mesh is registered, mesh information is not required for integration and operator call.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. |
required |
n_channel
|
int
|
Number of channels of the input tensor. |
required |
device
|
Optional[device]
|
Device to which the mesh should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the mesh. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
|
regisiter_additional_check
¤
regisiter_additional_check(
func: Callable[[int, int], bool]
)
Register an additional check function for the value and mesh compatibility.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
func
|
Callable[[int, int], bool]
|
Function that takes the dimension of the value and mesh as input and returns a boolean indicating whether they are compatible. |
required |
Source code in torchfsm/operator/_base.py
589 590 591 592 593 594 595 596 |
|
add_generator
¤
add_generator(generator: GeneratorLike, coef=1)
Add a generator to the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generator
|
GeneratorLike
|
Generator to be added. It should be a callable that takes a Fourier mesh and number of channels as input and returns a linear coefficient or nonlinear function. |
required |
coef
|
float
|
Coefficient for the generator. Default is 1. |
1
|
Source code in torchfsm/operator/_base.py
598 599 600 601 602 603 604 605 606 607 |
|
set_integrator
¤
set_integrator(
integrator: Union[
Literal["auto"], ETDRKIntegrator, RKIntegrator
],
**integrator_config
)
Set the integrator for the operator. The integrator is used for time integration of the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
integrator
|
Union[Literal['auto'], ETDRKIntegrator, RKIntegrator]
|
Integrator to be used. If "auto", the integrator will be chosen automatically based on the operator type. If "auto", the integrator will be set as ETDRKIntegrator.ETDRK0 for linear operators and ETDRKIntegrator.ETDRK4 for nonlinear operators. |
required |
**integrator_config
|
Additional configuration for the integrator. |
{}
|
Source code in torchfsm/operator/_base.py
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
|
integrate
¤
integrate(
u_0: Optional[torch.Tensor] = None,
u_0_fft: Optional[torch.Tensor] = None,
dt: float = 1,
step: int = 1,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
progressive: bool = False,
trajectory_recorder: Optional[_TrajRecorder] = None,
return_in_fourier: bool = False,
) -> Union[
SpatialTensor["B C H ..."],
SpatialTensor["B T C H ..."],
FourierTensor["B C H ..."],
FourierTensor["B T C H ..."],
]
Integrate the operator using the provided initial condition and time step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u_0
|
Optional[Tensor]
|
Initial condition in spatial domain. Default is None. |
None
|
u_0_fft
|
Optional[Tensor]
|
Initial condition in Fourier domain. Default is None. At least one of u_0 or u_0_fft should be provided. |
None
|
dt
|
float
|
Time step for the integrator. Default is 1. |
1
|
step
|
int
|
Number of time steps to integrate. Default is 1. |
1
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
progressive
|
bool
|
If True, show a progress bar during integration. Default is False. |
False
|
trajectory_recorder
|
Optional[_TrajRecorder]
|
Trajectory recorder for recording the trajectory during integration. Default is None. If None, no trajectory will be recorded. The function will only return the final frame. |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], SpatialTensor['B T C H ...'], FourierTensor['B C H ...'], FourierTensor['B T C H ...']]
|
Union[SpatialTensor["B C H ..."], SpatialTensor["B T C H ..."], FourierTensor["B C H ..."], FourierTensor["B T C H ..."]]: Integrated result in spatial or Fourier domain. If trajectory_recorder is provided, the result will be a trajectory tensor of shape (B, T, C, H, ...). Otherwise, the result will be a tensor of shape (B, C, H, ...). If return_in_fourier is True, the result will be in Fourier domain. Otherwise, it will be in spatial domain. |
Source code in torchfsm/operator/_base.py
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
|
__call__
¤
__call__(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
return_in_fourier=False,
) -> Union[
SpatialTensor["B C H ..."], FourierTensor["B C H ..."]
]
Call the operator with the provided input tensor. The operator will apply the linear coefficient and nonlinear function to the input tensor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], FourierTensor['B C H ...']]
|
Union[SpatialTensor["B C H ..."], FourierTensor["B C H ..."]]: Result of the operator in spatial or Fourier domain. |
Source code in torchfsm/operator/_base.py
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
|
to
¤
to(device=None, dtype=None)
Move the operator to the specified device and change the data type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device
|
Optional[device]
|
Device to which the operator should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the operator. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
743 744 745 746 747 748 749 750 751 752 753 |
|
__add__
¤
__add__(other)
Source code in torchfsm/operator/_base.py
775 776 777 778 779 780 781 782 783 784 785 786 787 788 |
|
__mul__
¤
__mul__(other)
Source code in torchfsm/operator/_base.py
790 791 792 793 794 795 796 |
|
__neg__
¤
__neg__()
Source code in torchfsm/operator/_base.py
798 799 |
|
__init__
¤
__init__(
source_func: Optional[
Callable[[torch.Tensor], torch.Tensor]
] = None,
non_linear: bool = True,
) -> None
Source code in torchfsm/operator/generic/_source.py
63 64 65 66 67 68 69 70 71 72 73 74 |
|
torchfsm.operator.Laplacian
¤
Bases: LinearOperator
Laplacian
calculates the Laplacian of a vector field.
It is defined as \(\nabla \cdot (\nabla\mathbf{u}) = \left[\begin{matrix}\sum_i \frac{\partial^2 u_x}{\partial i^2 } \\\sum_i \frac{\partial^2 u_y}{\partial i^2 } \\\cdots \\\sum_i \frac{\partial^2 u_i}{\partial i^2 } \\\end{matrix}\right]\)
Note that this class is an operator wrapper. The actual implementation of the operator is in the _LaplacianCore
class.
Source code in torchfsm/operator/generic/_laplacian.py
17 18 19 20 21 22 23 24 25 26 |
|
_state_dict
instance-attribute
¤
_state_dict = {
"f_mesh": None,
"n_channel": None,
"linear_coef": None,
"nonlinear_func": None,
"operator": None,
"integrator": None,
"invert_linear_coef": None,
}
_value_mesh_check_func
instance-attribute
¤
_value_mesh_check_func = lambda dim_value, dim_mesh: True
register_mesh
¤
register_mesh(
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
],
n_channel: int,
device=None,
dtype=None,
)
Register the mesh and number of channels for the operator. Once a mesh is registered, mesh information is not required for integration and operator call.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. |
required |
n_channel
|
int
|
Number of channels of the input tensor. |
required |
device
|
Optional[device]
|
Device to which the mesh should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the mesh. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
|
solve
¤
solve(
b: Optional[torch.Tensor] = None,
b_fft: Optional[torch.Tensor] = None,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
n_channel: Optional[int] = None,
return_in_fourier=False,
) -> Union[
SpatialTensor["B C H ..."], SpatialTensor["B C H ..."]
]
Solve the linear operator equation \(Ax = b\), where \(A\) is the linear operator and \(b\) is the right-hand side.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
b
|
Optional[Tensor]
|
Right-hand side tensor in spatial domain. If None, b_fft should be provided. |
None
|
b_fft
|
Optional[Tensor]
|
Right-hand side tensor in Fourier domain. If None, b should be provided. |
None
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. If None, the mesh registered in the operator will be used. |
None
|
n_channel
|
Optional[int]
|
Number of channels of \(x\). If None, the number of channels registered in the operator will be used. |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], SpatialTensor['B C H ...']]
|
Union[SpatialTensor["B C H ..."], FourierTensor["B C H ..."]]: Solution tensor in spatial or Fourier domain. |
Source code in torchfsm/operator/_base.py
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
|
__radd__
¤
__radd__(other)
Source code in torchfsm/operator/_base.py
176 177 |
|
__iadd__
¤
__iadd__(other)
Source code in torchfsm/operator/_base.py
179 180 |
|
__sub__
¤
__sub__(other)
Source code in torchfsm/operator/_base.py
182 183 184 185 186 |
|
__rsub__
¤
__rsub__(other)
Source code in torchfsm/operator/_base.py
188 189 190 191 192 |
|
__isub__
¤
__isub__(other)
Source code in torchfsm/operator/_base.py
194 195 |
|
__rmul__
¤
__rmul__(other)
Source code in torchfsm/operator/_base.py
197 198 |
|
__imul__
¤
__imul__(other)
Source code in torchfsm/operator/_base.py
200 201 |
|
__truediv__
¤
__truediv__(other)
Source code in torchfsm/operator/_base.py
203 204 205 206 207 |
|
_build_linear_coefs
¤
_build_linear_coefs(
linear_coefs: Optional[Sequence[LinearCoef]],
)
Build the linear coefficients based on the provided linear coefficient generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
linear_coefs
|
Optional[Sequence[LinearCoef]]
|
List of linear coefficient generators. |
required |
Source code in torchfsm/operator/_base.py
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
|
_build_nonlinear_funcs
¤
_build_nonlinear_funcs(
nonlinear_funcs: Optional[Sequence[NonlinearFunc]],
)
Build the nonlinear functions based on the provided nonlinear function generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nonlinear_funcs
|
Optional[Sequence[NonlinearFunc]]
|
List of nonlinear function generators. |
required |
Source code in torchfsm/operator/_base.py
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
|
_build_operator
¤
_build_operator()
Build the operator based on the linear coefficient and nonlinear function. If both linear coefficient and nonlinear function are None, the operator is set to None.
Source code in torchfsm/operator/_base.py
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
|
_build_integrator
¤
_build_integrator(dt: float)
Build the integrator based on the provided time step and integrator type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dt
|
float
|
Time step for the integrator. |
required |
Source code in torchfsm/operator/_base.py
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
|
_pre_check
¤
_pre_check(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
] = None,
) -> Tuple[FourierMesh, int]
Pre-check the input tensor and mesh. If the mesh is not registered, register it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. Default is None. If None, the mesh registered in the operator will be used. |
None
|
Returns:
Type | Description |
---|---|
Tuple[FourierMesh, int]
|
Tuple[FourierMesh, int]: Tuple of Fourier mesh and number of channels. |
Source code in torchfsm/operator/_base.py
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
|
regisiter_additional_check
¤
regisiter_additional_check(
func: Callable[[int, int], bool]
)
Register an additional check function for the value and mesh compatibility.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
func
|
Callable[[int, int], bool]
|
Function that takes the dimension of the value and mesh as input and returns a boolean indicating whether they are compatible. |
required |
Source code in torchfsm/operator/_base.py
589 590 591 592 593 594 595 596 |
|
add_generator
¤
add_generator(generator: GeneratorLike, coef=1)
Add a generator to the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generator
|
GeneratorLike
|
Generator to be added. It should be a callable that takes a Fourier mesh and number of channels as input and returns a linear coefficient or nonlinear function. |
required |
coef
|
float
|
Coefficient for the generator. Default is 1. |
1
|
Source code in torchfsm/operator/_base.py
598 599 600 601 602 603 604 605 606 607 |
|
set_integrator
¤
set_integrator(
integrator: Union[
Literal["auto"], ETDRKIntegrator, RKIntegrator
],
**integrator_config
)
Set the integrator for the operator. The integrator is used for time integration of the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
integrator
|
Union[Literal['auto'], ETDRKIntegrator, RKIntegrator]
|
Integrator to be used. If "auto", the integrator will be chosen automatically based on the operator type. If "auto", the integrator will be set as ETDRKIntegrator.ETDRK0 for linear operators and ETDRKIntegrator.ETDRK4 for nonlinear operators. |
required |
**integrator_config
|
Additional configuration for the integrator. |
{}
|
Source code in torchfsm/operator/_base.py
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
|
integrate
¤
integrate(
u_0: Optional[torch.Tensor] = None,
u_0_fft: Optional[torch.Tensor] = None,
dt: float = 1,
step: int = 1,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
progressive: bool = False,
trajectory_recorder: Optional[_TrajRecorder] = None,
return_in_fourier: bool = False,
) -> Union[
SpatialTensor["B C H ..."],
SpatialTensor["B T C H ..."],
FourierTensor["B C H ..."],
FourierTensor["B T C H ..."],
]
Integrate the operator using the provided initial condition and time step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u_0
|
Optional[Tensor]
|
Initial condition in spatial domain. Default is None. |
None
|
u_0_fft
|
Optional[Tensor]
|
Initial condition in Fourier domain. Default is None. At least one of u_0 or u_0_fft should be provided. |
None
|
dt
|
float
|
Time step for the integrator. Default is 1. |
1
|
step
|
int
|
Number of time steps to integrate. Default is 1. |
1
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
progressive
|
bool
|
If True, show a progress bar during integration. Default is False. |
False
|
trajectory_recorder
|
Optional[_TrajRecorder]
|
Trajectory recorder for recording the trajectory during integration. Default is None. If None, no trajectory will be recorded. The function will only return the final frame. |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], SpatialTensor['B T C H ...'], FourierTensor['B C H ...'], FourierTensor['B T C H ...']]
|
Union[SpatialTensor["B C H ..."], SpatialTensor["B T C H ..."], FourierTensor["B C H ..."], FourierTensor["B T C H ..."]]: Integrated result in spatial or Fourier domain. If trajectory_recorder is provided, the result will be a trajectory tensor of shape (B, T, C, H, ...). Otherwise, the result will be a tensor of shape (B, C, H, ...). If return_in_fourier is True, the result will be in Fourier domain. Otherwise, it will be in spatial domain. |
Source code in torchfsm/operator/_base.py
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
|
__call__
¤
__call__(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
return_in_fourier=False,
) -> Union[
SpatialTensor["B C H ..."], FourierTensor["B C H ..."]
]
Call the operator with the provided input tensor. The operator will apply the linear coefficient and nonlinear function to the input tensor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], FourierTensor['B C H ...']]
|
Union[SpatialTensor["B C H ..."], FourierTensor["B C H ..."]]: Result of the operator in spatial or Fourier domain. |
Source code in torchfsm/operator/_base.py
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
|
to
¤
to(device=None, dtype=None)
Move the operator to the specified device and change the data type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device
|
Optional[device]
|
Device to which the operator should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the operator. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
743 744 745 746 747 748 749 750 751 752 753 |
|
__add__
¤
__add__(other)
Source code in torchfsm/operator/_base.py
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 |
|
__mul__
¤
__mul__(other)
Source code in torchfsm/operator/_base.py
859 860 861 862 863 864 865 |
|
__neg__
¤
__neg__()
Source code in torchfsm/operator/_base.py
867 868 869 870 |
|
__init__
¤
__init__() -> None
Source code in torchfsm/operator/generic/_laplacian.py
25 26 |
|
torchfsm.operator.SpatialDerivative
¤
Bases: LinearOperator
SpatialDeritivate
calculates the spatial derivative of a scalar field w.r.t to a spatial dimension.
It is defined as\(\frac{\partial ^n}{\partial i} p\) where \(i = x, y, z, \cdots\) and \(n=1, 2, 3, \cdots\)
Note that this class is an operator wrapper. The actual implementation of the operator is in the _SpatialDerivativeCore
class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dim_index
|
int
|
The index of the spatial dimension. |
required |
order
|
int
|
The order of the derivative. |
required |
Source code in torchfsm/operator/generic/_spatial_derivative.py
43 44 45 46 47 48 49 50 51 52 53 54 55 |
|
_state_dict
instance-attribute
¤
_state_dict = {
"f_mesh": None,
"n_channel": None,
"linear_coef": None,
"nonlinear_func": None,
"operator": None,
"integrator": None,
"invert_linear_coef": None,
}
_value_mesh_check_func
instance-attribute
¤
_value_mesh_check_func = lambda dim_value, dim_mesh: True
register_mesh
¤
register_mesh(
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
],
n_channel: int,
device=None,
dtype=None,
)
Register the mesh and number of channels for the operator. Once a mesh is registered, mesh information is not required for integration and operator call.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. |
required |
n_channel
|
int
|
Number of channels of the input tensor. |
required |
device
|
Optional[device]
|
Device to which the mesh should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the mesh. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
|
solve
¤
solve(
b: Optional[torch.Tensor] = None,
b_fft: Optional[torch.Tensor] = None,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
n_channel: Optional[int] = None,
return_in_fourier=False,
) -> Union[
SpatialTensor["B C H ..."], SpatialTensor["B C H ..."]
]
Solve the linear operator equation \(Ax = b\), where \(A\) is the linear operator and \(b\) is the right-hand side.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
b
|
Optional[Tensor]
|
Right-hand side tensor in spatial domain. If None, b_fft should be provided. |
None
|
b_fft
|
Optional[Tensor]
|
Right-hand side tensor in Fourier domain. If None, b should be provided. |
None
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. If None, the mesh registered in the operator will be used. |
None
|
n_channel
|
Optional[int]
|
Number of channels of \(x\). If None, the number of channels registered in the operator will be used. |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], SpatialTensor['B C H ...']]
|
Union[SpatialTensor["B C H ..."], FourierTensor["B C H ..."]]: Solution tensor in spatial or Fourier domain. |
Source code in torchfsm/operator/_base.py
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
|
__radd__
¤
__radd__(other)
Source code in torchfsm/operator/_base.py
176 177 |
|
__iadd__
¤
__iadd__(other)
Source code in torchfsm/operator/_base.py
179 180 |
|
__sub__
¤
__sub__(other)
Source code in torchfsm/operator/_base.py
182 183 184 185 186 |
|
__rsub__
¤
__rsub__(other)
Source code in torchfsm/operator/_base.py
188 189 190 191 192 |
|
__isub__
¤
__isub__(other)
Source code in torchfsm/operator/_base.py
194 195 |
|
__rmul__
¤
__rmul__(other)
Source code in torchfsm/operator/_base.py
197 198 |
|
__imul__
¤
__imul__(other)
Source code in torchfsm/operator/_base.py
200 201 |
|
__truediv__
¤
__truediv__(other)
Source code in torchfsm/operator/_base.py
203 204 205 206 207 |
|
_build_linear_coefs
¤
_build_linear_coefs(
linear_coefs: Optional[Sequence[LinearCoef]],
)
Build the linear coefficients based on the provided linear coefficient generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
linear_coefs
|
Optional[Sequence[LinearCoef]]
|
List of linear coefficient generators. |
required |
Source code in torchfsm/operator/_base.py
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
|
_build_nonlinear_funcs
¤
_build_nonlinear_funcs(
nonlinear_funcs: Optional[Sequence[NonlinearFunc]],
)
Build the nonlinear functions based on the provided nonlinear function generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nonlinear_funcs
|
Optional[Sequence[NonlinearFunc]]
|
List of nonlinear function generators. |
required |
Source code in torchfsm/operator/_base.py
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
|
_build_operator
¤
_build_operator()
Build the operator based on the linear coefficient and nonlinear function. If both linear coefficient and nonlinear function are None, the operator is set to None.
Source code in torchfsm/operator/_base.py
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
|
_build_integrator
¤
_build_integrator(dt: float)
Build the integrator based on the provided time step and integrator type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dt
|
float
|
Time step for the integrator. |
required |
Source code in torchfsm/operator/_base.py
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
|
_pre_check
¤
_pre_check(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
] = None,
) -> Tuple[FourierMesh, int]
Pre-check the input tensor and mesh. If the mesh is not registered, register it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. Default is None. If None, the mesh registered in the operator will be used. |
None
|
Returns:
Type | Description |
---|---|
Tuple[FourierMesh, int]
|
Tuple[FourierMesh, int]: Tuple of Fourier mesh and number of channels. |
Source code in torchfsm/operator/_base.py
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
|
regisiter_additional_check
¤
regisiter_additional_check(
func: Callable[[int, int], bool]
)
Register an additional check function for the value and mesh compatibility.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
func
|
Callable[[int, int], bool]
|
Function that takes the dimension of the value and mesh as input and returns a boolean indicating whether they are compatible. |
required |
Source code in torchfsm/operator/_base.py
589 590 591 592 593 594 595 596 |
|
add_generator
¤
add_generator(generator: GeneratorLike, coef=1)
Add a generator to the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generator
|
GeneratorLike
|
Generator to be added. It should be a callable that takes a Fourier mesh and number of channels as input and returns a linear coefficient or nonlinear function. |
required |
coef
|
float
|
Coefficient for the generator. Default is 1. |
1
|
Source code in torchfsm/operator/_base.py
598 599 600 601 602 603 604 605 606 607 |
|
set_integrator
¤
set_integrator(
integrator: Union[
Literal["auto"], ETDRKIntegrator, RKIntegrator
],
**integrator_config
)
Set the integrator for the operator. The integrator is used for time integration of the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
integrator
|
Union[Literal['auto'], ETDRKIntegrator, RKIntegrator]
|
Integrator to be used. If "auto", the integrator will be chosen automatically based on the operator type. If "auto", the integrator will be set as ETDRKIntegrator.ETDRK0 for linear operators and ETDRKIntegrator.ETDRK4 for nonlinear operators. |
required |
**integrator_config
|
Additional configuration for the integrator. |
{}
|
Source code in torchfsm/operator/_base.py
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
|
integrate
¤
integrate(
u_0: Optional[torch.Tensor] = None,
u_0_fft: Optional[torch.Tensor] = None,
dt: float = 1,
step: int = 1,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
progressive: bool = False,
trajectory_recorder: Optional[_TrajRecorder] = None,
return_in_fourier: bool = False,
) -> Union[
SpatialTensor["B C H ..."],
SpatialTensor["B T C H ..."],
FourierTensor["B C H ..."],
FourierTensor["B T C H ..."],
]
Integrate the operator using the provided initial condition and time step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u_0
|
Optional[Tensor]
|
Initial condition in spatial domain. Default is None. |
None
|
u_0_fft
|
Optional[Tensor]
|
Initial condition in Fourier domain. Default is None. At least one of u_0 or u_0_fft should be provided. |
None
|
dt
|
float
|
Time step for the integrator. Default is 1. |
1
|
step
|
int
|
Number of time steps to integrate. Default is 1. |
1
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
progressive
|
bool
|
If True, show a progress bar during integration. Default is False. |
False
|
trajectory_recorder
|
Optional[_TrajRecorder]
|
Trajectory recorder for recording the trajectory during integration. Default is None. If None, no trajectory will be recorded. The function will only return the final frame. |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], SpatialTensor['B T C H ...'], FourierTensor['B C H ...'], FourierTensor['B T C H ...']]
|
Union[SpatialTensor["B C H ..."], SpatialTensor["B T C H ..."], FourierTensor["B C H ..."], FourierTensor["B T C H ..."]]: Integrated result in spatial or Fourier domain. If trajectory_recorder is provided, the result will be a trajectory tensor of shape (B, T, C, H, ...). Otherwise, the result will be a tensor of shape (B, C, H, ...). If return_in_fourier is True, the result will be in Fourier domain. Otherwise, it will be in spatial domain. |
Source code in torchfsm/operator/_base.py
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
|
__call__
¤
__call__(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
return_in_fourier=False,
) -> Union[
SpatialTensor["B C H ..."], FourierTensor["B C H ..."]
]
Call the operator with the provided input tensor. The operator will apply the linear coefficient and nonlinear function to the input tensor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], FourierTensor['B C H ...']]
|
Union[SpatialTensor["B C H ..."], FourierTensor["B C H ..."]]: Result of the operator in spatial or Fourier domain. |
Source code in torchfsm/operator/_base.py
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
|
to
¤
to(device=None, dtype=None)
Move the operator to the specified device and change the data type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device
|
Optional[device]
|
Device to which the operator should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the operator. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
743 744 745 746 747 748 749 750 751 752 753 |
|
__add__
¤
__add__(other)
Source code in torchfsm/operator/_base.py
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 |
|
__mul__
¤
__mul__(other)
Source code in torchfsm/operator/_base.py
859 860 861 862 863 864 865 |
|
__neg__
¤
__neg__()
Source code in torchfsm/operator/_base.py
867 868 869 870 |
|
__init__
¤
__init__(dim_index: int, order: int) -> None
Source code in torchfsm/operator/generic/_spatial_derivative.py
54 55 |
|
torchfsm.operator.KSConvection
¤
Bases: NonlinearOperator
The Kuramoto-Sivashinsky convection operator for a scalar field.
It is defined as: \(\frac{1}{2}|\nabla \phi|^2=\frac{1}{2}\sum_{i=0}^{I}(\frac{\partial \phi}{\partial i})^2\)
Note that this class is an operator wrapper. The real implementation of the source term is in the _KSConvectionCore
class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
remove_mean
|
bool
|
Whether to remove the mean of the result. Default is True. Set to True will improve the stability of the simulation. |
True
|
Source code in torchfsm/operator/dedicated/_ks_convection.py
55 56 57 58 59 60 61 62 63 64 65 66 67 |
|
_state_dict
instance-attribute
¤
_state_dict = {
"f_mesh": None,
"n_channel": None,
"linear_coef": None,
"nonlinear_func": None,
"operator": None,
"integrator": None,
"invert_linear_coef": None,
}
_value_mesh_check_func
instance-attribute
¤
_value_mesh_check_func = lambda dim_value, dim_mesh: True
set_de_aliasing_rate
¤
set_de_aliasing_rate(de_aliasing_rate: float)
Set the de-aliasing rate for the nonlinear operator. Args: de_aliasing_rate (float): De-aliasing rate. Default is ⅔.
Source code in torchfsm/operator/_base.py
275 276 277 278 279 280 281 282 283 |
|
__radd__
¤
__radd__(other)
Source code in torchfsm/operator/_base.py
176 177 |
|
__iadd__
¤
__iadd__(other)
Source code in torchfsm/operator/_base.py
179 180 |
|
__sub__
¤
__sub__(other)
Source code in torchfsm/operator/_base.py
182 183 184 185 186 |
|
__rsub__
¤
__rsub__(other)
Source code in torchfsm/operator/_base.py
188 189 190 191 192 |
|
__isub__
¤
__isub__(other)
Source code in torchfsm/operator/_base.py
194 195 |
|
__rmul__
¤
__rmul__(other)
Source code in torchfsm/operator/_base.py
197 198 |
|
__imul__
¤
__imul__(other)
Source code in torchfsm/operator/_base.py
200 201 |
|
__truediv__
¤
__truediv__(other)
Source code in torchfsm/operator/_base.py
203 204 205 206 207 |
|
_build_linear_coefs
¤
_build_linear_coefs(
linear_coefs: Optional[Sequence[LinearCoef]],
)
Build the linear coefficients based on the provided linear coefficient generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
linear_coefs
|
Optional[Sequence[LinearCoef]]
|
List of linear coefficient generators. |
required |
Source code in torchfsm/operator/_base.py
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
|
_build_nonlinear_funcs
¤
_build_nonlinear_funcs(
nonlinear_funcs: Optional[Sequence[NonlinearFunc]],
)
Build the nonlinear functions based on the provided nonlinear function generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nonlinear_funcs
|
Optional[Sequence[NonlinearFunc]]
|
List of nonlinear function generators. |
required |
Source code in torchfsm/operator/_base.py
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
|
_build_operator
¤
_build_operator()
Build the operator based on the linear coefficient and nonlinear function. If both linear coefficient and nonlinear function are None, the operator is set to None.
Source code in torchfsm/operator/_base.py
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
|
_build_integrator
¤
_build_integrator(dt: float)
Build the integrator based on the provided time step and integrator type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dt
|
float
|
Time step for the integrator. |
required |
Source code in torchfsm/operator/_base.py
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
|
_pre_check
¤
_pre_check(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
] = None,
) -> Tuple[FourierMesh, int]
Pre-check the input tensor and mesh. If the mesh is not registered, register it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. Default is None. If None, the mesh registered in the operator will be used. |
None
|
Returns:
Type | Description |
---|---|
Tuple[FourierMesh, int]
|
Tuple[FourierMesh, int]: Tuple of Fourier mesh and number of channels. |
Source code in torchfsm/operator/_base.py
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
|
register_mesh
¤
register_mesh(
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
],
n_channel: int,
device=None,
dtype=None,
)
Register the mesh and number of channels for the operator. Once a mesh is registered, mesh information is not required for integration and operator call.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. |
required |
n_channel
|
int
|
Number of channels of the input tensor. |
required |
device
|
Optional[device]
|
Device to which the mesh should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the mesh. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
|
regisiter_additional_check
¤
regisiter_additional_check(
func: Callable[[int, int], bool]
)
Register an additional check function for the value and mesh compatibility.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
func
|
Callable[[int, int], bool]
|
Function that takes the dimension of the value and mesh as input and returns a boolean indicating whether they are compatible. |
required |
Source code in torchfsm/operator/_base.py
589 590 591 592 593 594 595 596 |
|
add_generator
¤
add_generator(generator: GeneratorLike, coef=1)
Add a generator to the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generator
|
GeneratorLike
|
Generator to be added. It should be a callable that takes a Fourier mesh and number of channels as input and returns a linear coefficient or nonlinear function. |
required |
coef
|
float
|
Coefficient for the generator. Default is 1. |
1
|
Source code in torchfsm/operator/_base.py
598 599 600 601 602 603 604 605 606 607 |
|
set_integrator
¤
set_integrator(
integrator: Union[
Literal["auto"], ETDRKIntegrator, RKIntegrator
],
**integrator_config
)
Set the integrator for the operator. The integrator is used for time integration of the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
integrator
|
Union[Literal['auto'], ETDRKIntegrator, RKIntegrator]
|
Integrator to be used. If "auto", the integrator will be chosen automatically based on the operator type. If "auto", the integrator will be set as ETDRKIntegrator.ETDRK0 for linear operators and ETDRKIntegrator.ETDRK4 for nonlinear operators. |
required |
**integrator_config
|
Additional configuration for the integrator. |
{}
|
Source code in torchfsm/operator/_base.py
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
|
integrate
¤
integrate(
u_0: Optional[torch.Tensor] = None,
u_0_fft: Optional[torch.Tensor] = None,
dt: float = 1,
step: int = 1,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
progressive: bool = False,
trajectory_recorder: Optional[_TrajRecorder] = None,
return_in_fourier: bool = False,
) -> Union[
SpatialTensor["B C H ..."],
SpatialTensor["B T C H ..."],
FourierTensor["B C H ..."],
FourierTensor["B T C H ..."],
]
Integrate the operator using the provided initial condition and time step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u_0
|
Optional[Tensor]
|
Initial condition in spatial domain. Default is None. |
None
|
u_0_fft
|
Optional[Tensor]
|
Initial condition in Fourier domain. Default is None. At least one of u_0 or u_0_fft should be provided. |
None
|
dt
|
float
|
Time step for the integrator. Default is 1. |
1
|
step
|
int
|
Number of time steps to integrate. Default is 1. |
1
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
progressive
|
bool
|
If True, show a progress bar during integration. Default is False. |
False
|
trajectory_recorder
|
Optional[_TrajRecorder]
|
Trajectory recorder for recording the trajectory during integration. Default is None. If None, no trajectory will be recorded. The function will only return the final frame. |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], SpatialTensor['B T C H ...'], FourierTensor['B C H ...'], FourierTensor['B T C H ...']]
|
Union[SpatialTensor["B C H ..."], SpatialTensor["B T C H ..."], FourierTensor["B C H ..."], FourierTensor["B T C H ..."]]: Integrated result in spatial or Fourier domain. If trajectory_recorder is provided, the result will be a trajectory tensor of shape (B, T, C, H, ...). Otherwise, the result will be a tensor of shape (B, C, H, ...). If return_in_fourier is True, the result will be in Fourier domain. Otherwise, it will be in spatial domain. |
Source code in torchfsm/operator/_base.py
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
|
__call__
¤
__call__(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
return_in_fourier=False,
) -> Union[
SpatialTensor["B C H ..."], FourierTensor["B C H ..."]
]
Call the operator with the provided input tensor. The operator will apply the linear coefficient and nonlinear function to the input tensor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], FourierTensor['B C H ...']]
|
Union[SpatialTensor["B C H ..."], FourierTensor["B C H ..."]]: Result of the operator in spatial or Fourier domain. |
Source code in torchfsm/operator/_base.py
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
|
to
¤
to(device=None, dtype=None)
Move the operator to the specified device and change the data type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device
|
Optional[device]
|
Device to which the operator should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the operator. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
743 744 745 746 747 748 749 750 751 752 753 |
|
__add__
¤
__add__(other)
Source code in torchfsm/operator/_base.py
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 |
|
__mul__
¤
__mul__(other)
Source code in torchfsm/operator/_base.py
929 930 931 932 933 934 935 |
|
__neg__
¤
__neg__()
Source code in torchfsm/operator/_base.py
937 938 939 940 |
|
__init__
¤
__init__(remove_mean: bool = True) -> None
Source code in torchfsm/operator/dedicated/_ks_convection.py
66 67 |
|
torchfsm.operator.VorticityConvection
¤
Bases: NonlinearOperator
Operator for vorticity convection in 2D.
It is defined as \((\mathbf{u}\cdot\nabla) \omega\) where \(\omega\) is the vorticity and \(\mathbf{u}\) is the velocity.
Note that this class is an operator wrapper. The real implementation of the source term is in the _VorticityConvectionCore
class.
Source code in torchfsm/operator/dedicated/_navier_stokes.py
62 63 64 65 66 67 68 69 70 71 |
|
_state_dict
instance-attribute
¤
_state_dict = {
"f_mesh": None,
"n_channel": None,
"linear_coef": None,
"nonlinear_func": None,
"operator": None,
"integrator": None,
"invert_linear_coef": None,
}
_value_mesh_check_func
instance-attribute
¤
_value_mesh_check_func = lambda dim_value, dim_mesh: True
set_de_aliasing_rate
¤
set_de_aliasing_rate(de_aliasing_rate: float)
Set the de-aliasing rate for the nonlinear operator. Args: de_aliasing_rate (float): De-aliasing rate. Default is ⅔.
Source code in torchfsm/operator/_base.py
275 276 277 278 279 280 281 282 283 |
|
__radd__
¤
__radd__(other)
Source code in torchfsm/operator/_base.py
176 177 |
|
__iadd__
¤
__iadd__(other)
Source code in torchfsm/operator/_base.py
179 180 |
|
__sub__
¤
__sub__(other)
Source code in torchfsm/operator/_base.py
182 183 184 185 186 |
|
__rsub__
¤
__rsub__(other)
Source code in torchfsm/operator/_base.py
188 189 190 191 192 |
|
__isub__
¤
__isub__(other)
Source code in torchfsm/operator/_base.py
194 195 |
|
__rmul__
¤
__rmul__(other)
Source code in torchfsm/operator/_base.py
197 198 |
|
__imul__
¤
__imul__(other)
Source code in torchfsm/operator/_base.py
200 201 |
|
__truediv__
¤
__truediv__(other)
Source code in torchfsm/operator/_base.py
203 204 205 206 207 |
|
_build_linear_coefs
¤
_build_linear_coefs(
linear_coefs: Optional[Sequence[LinearCoef]],
)
Build the linear coefficients based on the provided linear coefficient generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
linear_coefs
|
Optional[Sequence[LinearCoef]]
|
List of linear coefficient generators. |
required |
Source code in torchfsm/operator/_base.py
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
|
_build_nonlinear_funcs
¤
_build_nonlinear_funcs(
nonlinear_funcs: Optional[Sequence[NonlinearFunc]],
)
Build the nonlinear functions based on the provided nonlinear function generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nonlinear_funcs
|
Optional[Sequence[NonlinearFunc]]
|
List of nonlinear function generators. |
required |
Source code in torchfsm/operator/_base.py
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
|
_build_operator
¤
_build_operator()
Build the operator based on the linear coefficient and nonlinear function. If both linear coefficient and nonlinear function are None, the operator is set to None.
Source code in torchfsm/operator/_base.py
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
|
_build_integrator
¤
_build_integrator(dt: float)
Build the integrator based on the provided time step and integrator type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dt
|
float
|
Time step for the integrator. |
required |
Source code in torchfsm/operator/_base.py
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
|
_pre_check
¤
_pre_check(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
] = None,
) -> Tuple[FourierMesh, int]
Pre-check the input tensor and mesh. If the mesh is not registered, register it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. Default is None. If None, the mesh registered in the operator will be used. |
None
|
Returns:
Type | Description |
---|---|
Tuple[FourierMesh, int]
|
Tuple[FourierMesh, int]: Tuple of Fourier mesh and number of channels. |
Source code in torchfsm/operator/_base.py
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
|
register_mesh
¤
register_mesh(
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
],
n_channel: int,
device=None,
dtype=None,
)
Register the mesh and number of channels for the operator. Once a mesh is registered, mesh information is not required for integration and operator call.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. |
required |
n_channel
|
int
|
Number of channels of the input tensor. |
required |
device
|
Optional[device]
|
Device to which the mesh should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the mesh. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
|
regisiter_additional_check
¤
regisiter_additional_check(
func: Callable[[int, int], bool]
)
Register an additional check function for the value and mesh compatibility.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
func
|
Callable[[int, int], bool]
|
Function that takes the dimension of the value and mesh as input and returns a boolean indicating whether they are compatible. |
required |
Source code in torchfsm/operator/_base.py
589 590 591 592 593 594 595 596 |
|
add_generator
¤
add_generator(generator: GeneratorLike, coef=1)
Add a generator to the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generator
|
GeneratorLike
|
Generator to be added. It should be a callable that takes a Fourier mesh and number of channels as input and returns a linear coefficient or nonlinear function. |
required |
coef
|
float
|
Coefficient for the generator. Default is 1. |
1
|
Source code in torchfsm/operator/_base.py
598 599 600 601 602 603 604 605 606 607 |
|
set_integrator
¤
set_integrator(
integrator: Union[
Literal["auto"], ETDRKIntegrator, RKIntegrator
],
**integrator_config
)
Set the integrator for the operator. The integrator is used for time integration of the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
integrator
|
Union[Literal['auto'], ETDRKIntegrator, RKIntegrator]
|
Integrator to be used. If "auto", the integrator will be chosen automatically based on the operator type. If "auto", the integrator will be set as ETDRKIntegrator.ETDRK0 for linear operators and ETDRKIntegrator.ETDRK4 for nonlinear operators. |
required |
**integrator_config
|
Additional configuration for the integrator. |
{}
|
Source code in torchfsm/operator/_base.py
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
|
integrate
¤
integrate(
u_0: Optional[torch.Tensor] = None,
u_0_fft: Optional[torch.Tensor] = None,
dt: float = 1,
step: int = 1,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
progressive: bool = False,
trajectory_recorder: Optional[_TrajRecorder] = None,
return_in_fourier: bool = False,
) -> Union[
SpatialTensor["B C H ..."],
SpatialTensor["B T C H ..."],
FourierTensor["B C H ..."],
FourierTensor["B T C H ..."],
]
Integrate the operator using the provided initial condition and time step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u_0
|
Optional[Tensor]
|
Initial condition in spatial domain. Default is None. |
None
|
u_0_fft
|
Optional[Tensor]
|
Initial condition in Fourier domain. Default is None. At least one of u_0 or u_0_fft should be provided. |
None
|
dt
|
float
|
Time step for the integrator. Default is 1. |
1
|
step
|
int
|
Number of time steps to integrate. Default is 1. |
1
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
progressive
|
bool
|
If True, show a progress bar during integration. Default is False. |
False
|
trajectory_recorder
|
Optional[_TrajRecorder]
|
Trajectory recorder for recording the trajectory during integration. Default is None. If None, no trajectory will be recorded. The function will only return the final frame. |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], SpatialTensor['B T C H ...'], FourierTensor['B C H ...'], FourierTensor['B T C H ...']]
|
Union[SpatialTensor["B C H ..."], SpatialTensor["B T C H ..."], FourierTensor["B C H ..."], FourierTensor["B T C H ..."]]: Integrated result in spatial or Fourier domain. If trajectory_recorder is provided, the result will be a trajectory tensor of shape (B, T, C, H, ...). Otherwise, the result will be a tensor of shape (B, C, H, ...). If return_in_fourier is True, the result will be in Fourier domain. Otherwise, it will be in spatial domain. |
Source code in torchfsm/operator/_base.py
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
|
__call__
¤
__call__(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
return_in_fourier=False,
) -> Union[
SpatialTensor["B C H ..."], FourierTensor["B C H ..."]
]
Call the operator with the provided input tensor. The operator will apply the linear coefficient and nonlinear function to the input tensor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], FourierTensor['B C H ...']]
|
Union[SpatialTensor["B C H ..."], FourierTensor["B C H ..."]]: Result of the operator in spatial or Fourier domain. |
Source code in torchfsm/operator/_base.py
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
|
to
¤
to(device=None, dtype=None)
Move the operator to the specified device and change the data type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device
|
Optional[device]
|
Device to which the operator should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the operator. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
743 744 745 746 747 748 749 750 751 752 753 |
|
__add__
¤
__add__(other)
Source code in torchfsm/operator/_base.py
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 |
|
__mul__
¤
__mul__(other)
Source code in torchfsm/operator/_base.py
929 930 931 932 933 934 935 |
|
__neg__
¤
__neg__()
Source code in torchfsm/operator/_base.py
937 938 939 940 |
|
__init__
¤
__init__() -> None
Source code in torchfsm/operator/dedicated/_navier_stokes.py
70 71 |
|
torchfsm.operator.Vorticity2Velocity
¤
Bases: LinearOperator
Operator for vorticity to velocity conversion in 2D.
It is defined as \([u,v]=[-\frac{\partial \nabla^{-2}\omega}{\partial y},\frac{\partial \nabla^{-2}\omega}{\partial x}]\).
Note that this class is an operator wrapper. The real implementation of the source term is in the _Vorticity2VelocityCore
class.
Source code in torchfsm/operator/dedicated/_navier_stokes.py
106 107 108 109 110 111 112 113 114 115 |
|
_state_dict
instance-attribute
¤
_state_dict = {
"f_mesh": None,
"n_channel": None,
"linear_coef": None,
"nonlinear_func": None,
"operator": None,
"integrator": None,
"invert_linear_coef": None,
}
_value_mesh_check_func
instance-attribute
¤
_value_mesh_check_func = lambda dim_value, dim_mesh: True
register_mesh
¤
register_mesh(
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
],
n_channel: int,
device=None,
dtype=None,
)
Register the mesh and number of channels for the operator. Once a mesh is registered, mesh information is not required for integration and operator call.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. |
required |
n_channel
|
int
|
Number of channels of the input tensor. |
required |
device
|
Optional[device]
|
Device to which the mesh should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the mesh. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
|
solve
¤
solve(
b: Optional[torch.Tensor] = None,
b_fft: Optional[torch.Tensor] = None,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
n_channel: Optional[int] = None,
return_in_fourier=False,
) -> Union[
SpatialTensor["B C H ..."], SpatialTensor["B C H ..."]
]
Solve the linear operator equation \(Ax = b\), where \(A\) is the linear operator and \(b\) is the right-hand side.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
b
|
Optional[Tensor]
|
Right-hand side tensor in spatial domain. If None, b_fft should be provided. |
None
|
b_fft
|
Optional[Tensor]
|
Right-hand side tensor in Fourier domain. If None, b should be provided. |
None
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. If None, the mesh registered in the operator will be used. |
None
|
n_channel
|
Optional[int]
|
Number of channels of \(x\). If None, the number of channels registered in the operator will be used. |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], SpatialTensor['B C H ...']]
|
Union[SpatialTensor["B C H ..."], FourierTensor["B C H ..."]]: Solution tensor in spatial or Fourier domain. |
Source code in torchfsm/operator/_base.py
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
|
__radd__
¤
__radd__(other)
Source code in torchfsm/operator/_base.py
176 177 |
|
__iadd__
¤
__iadd__(other)
Source code in torchfsm/operator/_base.py
179 180 |
|
__sub__
¤
__sub__(other)
Source code in torchfsm/operator/_base.py
182 183 184 185 186 |
|
__rsub__
¤
__rsub__(other)
Source code in torchfsm/operator/_base.py
188 189 190 191 192 |
|
__isub__
¤
__isub__(other)
Source code in torchfsm/operator/_base.py
194 195 |
|
__rmul__
¤
__rmul__(other)
Source code in torchfsm/operator/_base.py
197 198 |
|
__imul__
¤
__imul__(other)
Source code in torchfsm/operator/_base.py
200 201 |
|
__truediv__
¤
__truediv__(other)
Source code in torchfsm/operator/_base.py
203 204 205 206 207 |
|
_build_linear_coefs
¤
_build_linear_coefs(
linear_coefs: Optional[Sequence[LinearCoef]],
)
Build the linear coefficients based on the provided linear coefficient generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
linear_coefs
|
Optional[Sequence[LinearCoef]]
|
List of linear coefficient generators. |
required |
Source code in torchfsm/operator/_base.py
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
|
_build_nonlinear_funcs
¤
_build_nonlinear_funcs(
nonlinear_funcs: Optional[Sequence[NonlinearFunc]],
)
Build the nonlinear functions based on the provided nonlinear function generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nonlinear_funcs
|
Optional[Sequence[NonlinearFunc]]
|
List of nonlinear function generators. |
required |
Source code in torchfsm/operator/_base.py
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
|
_build_operator
¤
_build_operator()
Build the operator based on the linear coefficient and nonlinear function. If both linear coefficient and nonlinear function are None, the operator is set to None.
Source code in torchfsm/operator/_base.py
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
|
_build_integrator
¤
_build_integrator(dt: float)
Build the integrator based on the provided time step and integrator type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dt
|
float
|
Time step for the integrator. |
required |
Source code in torchfsm/operator/_base.py
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
|
_pre_check
¤
_pre_check(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
] = None,
) -> Tuple[FourierMesh, int]
Pre-check the input tensor and mesh. If the mesh is not registered, register it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. Default is None. If None, the mesh registered in the operator will be used. |
None
|
Returns:
Type | Description |
---|---|
Tuple[FourierMesh, int]
|
Tuple[FourierMesh, int]: Tuple of Fourier mesh and number of channels. |
Source code in torchfsm/operator/_base.py
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
|
regisiter_additional_check
¤
regisiter_additional_check(
func: Callable[[int, int], bool]
)
Register an additional check function for the value and mesh compatibility.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
func
|
Callable[[int, int], bool]
|
Function that takes the dimension of the value and mesh as input and returns a boolean indicating whether they are compatible. |
required |
Source code in torchfsm/operator/_base.py
589 590 591 592 593 594 595 596 |
|
add_generator
¤
add_generator(generator: GeneratorLike, coef=1)
Add a generator to the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generator
|
GeneratorLike
|
Generator to be added. It should be a callable that takes a Fourier mesh and number of channels as input and returns a linear coefficient or nonlinear function. |
required |
coef
|
float
|
Coefficient for the generator. Default is 1. |
1
|
Source code in torchfsm/operator/_base.py
598 599 600 601 602 603 604 605 606 607 |
|
set_integrator
¤
set_integrator(
integrator: Union[
Literal["auto"], ETDRKIntegrator, RKIntegrator
],
**integrator_config
)
Set the integrator for the operator. The integrator is used for time integration of the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
integrator
|
Union[Literal['auto'], ETDRKIntegrator, RKIntegrator]
|
Integrator to be used. If "auto", the integrator will be chosen automatically based on the operator type. If "auto", the integrator will be set as ETDRKIntegrator.ETDRK0 for linear operators and ETDRKIntegrator.ETDRK4 for nonlinear operators. |
required |
**integrator_config
|
Additional configuration for the integrator. |
{}
|
Source code in torchfsm/operator/_base.py
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
|
integrate
¤
integrate(
u_0: Optional[torch.Tensor] = None,
u_0_fft: Optional[torch.Tensor] = None,
dt: float = 1,
step: int = 1,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
progressive: bool = False,
trajectory_recorder: Optional[_TrajRecorder] = None,
return_in_fourier: bool = False,
) -> Union[
SpatialTensor["B C H ..."],
SpatialTensor["B T C H ..."],
FourierTensor["B C H ..."],
FourierTensor["B T C H ..."],
]
Integrate the operator using the provided initial condition and time step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u_0
|
Optional[Tensor]
|
Initial condition in spatial domain. Default is None. |
None
|
u_0_fft
|
Optional[Tensor]
|
Initial condition in Fourier domain. Default is None. At least one of u_0 or u_0_fft should be provided. |
None
|
dt
|
float
|
Time step for the integrator. Default is 1. |
1
|
step
|
int
|
Number of time steps to integrate. Default is 1. |
1
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
progressive
|
bool
|
If True, show a progress bar during integration. Default is False. |
False
|
trajectory_recorder
|
Optional[_TrajRecorder]
|
Trajectory recorder for recording the trajectory during integration. Default is None. If None, no trajectory will be recorded. The function will only return the final frame. |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], SpatialTensor['B T C H ...'], FourierTensor['B C H ...'], FourierTensor['B T C H ...']]
|
Union[SpatialTensor["B C H ..."], SpatialTensor["B T C H ..."], FourierTensor["B C H ..."], FourierTensor["B T C H ..."]]: Integrated result in spatial or Fourier domain. If trajectory_recorder is provided, the result will be a trajectory tensor of shape (B, T, C, H, ...). Otherwise, the result will be a tensor of shape (B, C, H, ...). If return_in_fourier is True, the result will be in Fourier domain. Otherwise, it will be in spatial domain. |
Source code in torchfsm/operator/_base.py
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
|
__call__
¤
__call__(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
return_in_fourier=False,
) -> Union[
SpatialTensor["B C H ..."], FourierTensor["B C H ..."]
]
Call the operator with the provided input tensor. The operator will apply the linear coefficient and nonlinear function to the input tensor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], FourierTensor['B C H ...']]
|
Union[SpatialTensor["B C H ..."], FourierTensor["B C H ..."]]: Result of the operator in spatial or Fourier domain. |
Source code in torchfsm/operator/_base.py
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
|
to
¤
to(device=None, dtype=None)
Move the operator to the specified device and change the data type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device
|
Optional[device]
|
Device to which the operator should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the operator. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
743 744 745 746 747 748 749 750 751 752 753 |
|
__add__
¤
__add__(other)
Source code in torchfsm/operator/_base.py
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 |
|
__mul__
¤
__mul__(other)
Source code in torchfsm/operator/_base.py
859 860 861 862 863 864 865 |
|
__neg__
¤
__neg__()
Source code in torchfsm/operator/_base.py
867 868 869 870 |
|
__init__
¤
__init__()
Source code in torchfsm/operator/dedicated/_navier_stokes.py
114 115 |
|
torchfsm.operator.Vorticity2Pressure
¤
Bases: NonlinearOperator
Operator for vorticity to pressure conversion in 2D.
It is defined as \(\begin{matrix}\mathbf{u}=[u,v]=[-\frac{\partial \nabla^{-2}\omega}{\partial y},\frac{\partial \nabla^{-2}\omega}{\partial x}]\\ p= -\nabla^{-2} (\nabla \cdot (\left(\mathbf{u}\cdot\nabla\right)\mathbf{u}-f))\end{matrix}\).
Note that this class is an operator wrapper. The real implementation of the source term is in the _Vorticity2PressureCore
class.
Source code in torchfsm/operator/dedicated/_navier_stokes.py
162 163 164 165 166 167 168 169 170 |
|
_state_dict
instance-attribute
¤
_state_dict = {
"f_mesh": None,
"n_channel": None,
"linear_coef": None,
"nonlinear_func": None,
"operator": None,
"integrator": None,
"invert_linear_coef": None,
}
_value_mesh_check_func
instance-attribute
¤
_value_mesh_check_func = lambda dim_value, dim_mesh: True
set_de_aliasing_rate
¤
set_de_aliasing_rate(de_aliasing_rate: float)
Set the de-aliasing rate for the nonlinear operator. Args: de_aliasing_rate (float): De-aliasing rate. Default is ⅔.
Source code in torchfsm/operator/_base.py
275 276 277 278 279 280 281 282 283 |
|
__radd__
¤
__radd__(other)
Source code in torchfsm/operator/_base.py
176 177 |
|
__iadd__
¤
__iadd__(other)
Source code in torchfsm/operator/_base.py
179 180 |
|
__sub__
¤
__sub__(other)
Source code in torchfsm/operator/_base.py
182 183 184 185 186 |
|
__rsub__
¤
__rsub__(other)
Source code in torchfsm/operator/_base.py
188 189 190 191 192 |
|
__isub__
¤
__isub__(other)
Source code in torchfsm/operator/_base.py
194 195 |
|
__rmul__
¤
__rmul__(other)
Source code in torchfsm/operator/_base.py
197 198 |
|
__imul__
¤
__imul__(other)
Source code in torchfsm/operator/_base.py
200 201 |
|
__truediv__
¤
__truediv__(other)
Source code in torchfsm/operator/_base.py
203 204 205 206 207 |
|
_build_linear_coefs
¤
_build_linear_coefs(
linear_coefs: Optional[Sequence[LinearCoef]],
)
Build the linear coefficients based on the provided linear coefficient generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
linear_coefs
|
Optional[Sequence[LinearCoef]]
|
List of linear coefficient generators. |
required |
Source code in torchfsm/operator/_base.py
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
|
_build_nonlinear_funcs
¤
_build_nonlinear_funcs(
nonlinear_funcs: Optional[Sequence[NonlinearFunc]],
)
Build the nonlinear functions based on the provided nonlinear function generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nonlinear_funcs
|
Optional[Sequence[NonlinearFunc]]
|
List of nonlinear function generators. |
required |
Source code in torchfsm/operator/_base.py
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
|
_build_operator
¤
_build_operator()
Build the operator based on the linear coefficient and nonlinear function. If both linear coefficient and nonlinear function are None, the operator is set to None.
Source code in torchfsm/operator/_base.py
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
|
_build_integrator
¤
_build_integrator(dt: float)
Build the integrator based on the provided time step and integrator type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dt
|
float
|
Time step for the integrator. |
required |
Source code in torchfsm/operator/_base.py
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
|
_pre_check
¤
_pre_check(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
] = None,
) -> Tuple[FourierMesh, int]
Pre-check the input tensor and mesh. If the mesh is not registered, register it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. Default is None. If None, the mesh registered in the operator will be used. |
None
|
Returns:
Type | Description |
---|---|
Tuple[FourierMesh, int]
|
Tuple[FourierMesh, int]: Tuple of Fourier mesh and number of channels. |
Source code in torchfsm/operator/_base.py
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
|
register_mesh
¤
register_mesh(
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
],
n_channel: int,
device=None,
dtype=None,
)
Register the mesh and number of channels for the operator. Once a mesh is registered, mesh information is not required for integration and operator call.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. |
required |
n_channel
|
int
|
Number of channels of the input tensor. |
required |
device
|
Optional[device]
|
Device to which the mesh should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the mesh. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
|
regisiter_additional_check
¤
regisiter_additional_check(
func: Callable[[int, int], bool]
)
Register an additional check function for the value and mesh compatibility.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
func
|
Callable[[int, int], bool]
|
Function that takes the dimension of the value and mesh as input and returns a boolean indicating whether they are compatible. |
required |
Source code in torchfsm/operator/_base.py
589 590 591 592 593 594 595 596 |
|
add_generator
¤
add_generator(generator: GeneratorLike, coef=1)
Add a generator to the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generator
|
GeneratorLike
|
Generator to be added. It should be a callable that takes a Fourier mesh and number of channels as input and returns a linear coefficient or nonlinear function. |
required |
coef
|
float
|
Coefficient for the generator. Default is 1. |
1
|
Source code in torchfsm/operator/_base.py
598 599 600 601 602 603 604 605 606 607 |
|
set_integrator
¤
set_integrator(
integrator: Union[
Literal["auto"], ETDRKIntegrator, RKIntegrator
],
**integrator_config
)
Set the integrator for the operator. The integrator is used for time integration of the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
integrator
|
Union[Literal['auto'], ETDRKIntegrator, RKIntegrator]
|
Integrator to be used. If "auto", the integrator will be chosen automatically based on the operator type. If "auto", the integrator will be set as ETDRKIntegrator.ETDRK0 for linear operators and ETDRKIntegrator.ETDRK4 for nonlinear operators. |
required |
**integrator_config
|
Additional configuration for the integrator. |
{}
|
Source code in torchfsm/operator/_base.py
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
|
integrate
¤
integrate(
u_0: Optional[torch.Tensor] = None,
u_0_fft: Optional[torch.Tensor] = None,
dt: float = 1,
step: int = 1,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
progressive: bool = False,
trajectory_recorder: Optional[_TrajRecorder] = None,
return_in_fourier: bool = False,
) -> Union[
SpatialTensor["B C H ..."],
SpatialTensor["B T C H ..."],
FourierTensor["B C H ..."],
FourierTensor["B T C H ..."],
]
Integrate the operator using the provided initial condition and time step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u_0
|
Optional[Tensor]
|
Initial condition in spatial domain. Default is None. |
None
|
u_0_fft
|
Optional[Tensor]
|
Initial condition in Fourier domain. Default is None. At least one of u_0 or u_0_fft should be provided. |
None
|
dt
|
float
|
Time step for the integrator. Default is 1. |
1
|
step
|
int
|
Number of time steps to integrate. Default is 1. |
1
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
progressive
|
bool
|
If True, show a progress bar during integration. Default is False. |
False
|
trajectory_recorder
|
Optional[_TrajRecorder]
|
Trajectory recorder for recording the trajectory during integration. Default is None. If None, no trajectory will be recorded. The function will only return the final frame. |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], SpatialTensor['B T C H ...'], FourierTensor['B C H ...'], FourierTensor['B T C H ...']]
|
Union[SpatialTensor["B C H ..."], SpatialTensor["B T C H ..."], FourierTensor["B C H ..."], FourierTensor["B T C H ..."]]: Integrated result in spatial or Fourier domain. If trajectory_recorder is provided, the result will be a trajectory tensor of shape (B, T, C, H, ...). Otherwise, the result will be a tensor of shape (B, C, H, ...). If return_in_fourier is True, the result will be in Fourier domain. Otherwise, it will be in spatial domain. |
Source code in torchfsm/operator/_base.py
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
|
__call__
¤
__call__(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
return_in_fourier=False,
) -> Union[
SpatialTensor["B C H ..."], FourierTensor["B C H ..."]
]
Call the operator with the provided input tensor. The operator will apply the linear coefficient and nonlinear function to the input tensor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], FourierTensor['B C H ...']]
|
Union[SpatialTensor["B C H ..."], FourierTensor["B C H ..."]]: Result of the operator in spatial or Fourier domain. |
Source code in torchfsm/operator/_base.py
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
|
to
¤
to(device=None, dtype=None)
Move the operator to the specified device and change the data type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device
|
Optional[device]
|
Device to which the operator should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the operator. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
743 744 745 746 747 748 749 750 751 752 753 |
|
__add__
¤
__add__(other)
Source code in torchfsm/operator/_base.py
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 |
|
__mul__
¤
__mul__(other)
Source code in torchfsm/operator/_base.py
929 930 931 932 933 934 935 |
|
__neg__
¤
__neg__()
Source code in torchfsm/operator/_base.py
937 938 939 940 |
|
__init__
¤
__init__(
external_force: Optional[OperatorLike] = None,
) -> None
Source code in torchfsm/operator/dedicated/_navier_stokes.py
169 170 |
|
torchfsm.operator.Velocity2Pressure
¤
Bases: NonlinearOperator
Operator for velocity to pressure conversion.
It is defined as \(-\nabla^{-2} (\nabla \cdot (\left(\mathbf{u}\cdot\nabla\right)\mathbf{u}-f))\)
Note that this class is an operator wrapper. The real implementation of the source term is in the _Velocity2PressureCore
class.
Source code in torchfsm/operator/dedicated/_navier_stokes.py
209 210 211 212 213 214 215 216 217 |
|
_state_dict
instance-attribute
¤
_state_dict = {
"f_mesh": None,
"n_channel": None,
"linear_coef": None,
"nonlinear_func": None,
"operator": None,
"integrator": None,
"invert_linear_coef": None,
}
_value_mesh_check_func
instance-attribute
¤
_value_mesh_check_func = lambda dim_value, dim_mesh: True
set_de_aliasing_rate
¤
set_de_aliasing_rate(de_aliasing_rate: float)
Set the de-aliasing rate for the nonlinear operator. Args: de_aliasing_rate (float): De-aliasing rate. Default is ⅔.
Source code in torchfsm/operator/_base.py
275 276 277 278 279 280 281 282 283 |
|
__radd__
¤
__radd__(other)
Source code in torchfsm/operator/_base.py
176 177 |
|
__iadd__
¤
__iadd__(other)
Source code in torchfsm/operator/_base.py
179 180 |
|
__sub__
¤
__sub__(other)
Source code in torchfsm/operator/_base.py
182 183 184 185 186 |
|
__rsub__
¤
__rsub__(other)
Source code in torchfsm/operator/_base.py
188 189 190 191 192 |
|
__isub__
¤
__isub__(other)
Source code in torchfsm/operator/_base.py
194 195 |
|
__rmul__
¤
__rmul__(other)
Source code in torchfsm/operator/_base.py
197 198 |
|
__imul__
¤
__imul__(other)
Source code in torchfsm/operator/_base.py
200 201 |
|
__truediv__
¤
__truediv__(other)
Source code in torchfsm/operator/_base.py
203 204 205 206 207 |
|
_build_linear_coefs
¤
_build_linear_coefs(
linear_coefs: Optional[Sequence[LinearCoef]],
)
Build the linear coefficients based on the provided linear coefficient generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
linear_coefs
|
Optional[Sequence[LinearCoef]]
|
List of linear coefficient generators. |
required |
Source code in torchfsm/operator/_base.py
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
|
_build_nonlinear_funcs
¤
_build_nonlinear_funcs(
nonlinear_funcs: Optional[Sequence[NonlinearFunc]],
)
Build the nonlinear functions based on the provided nonlinear function generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nonlinear_funcs
|
Optional[Sequence[NonlinearFunc]]
|
List of nonlinear function generators. |
required |
Source code in torchfsm/operator/_base.py
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
|
_build_operator
¤
_build_operator()
Build the operator based on the linear coefficient and nonlinear function. If both linear coefficient and nonlinear function are None, the operator is set to None.
Source code in torchfsm/operator/_base.py
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
|
_build_integrator
¤
_build_integrator(dt: float)
Build the integrator based on the provided time step and integrator type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dt
|
float
|
Time step for the integrator. |
required |
Source code in torchfsm/operator/_base.py
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
|
_pre_check
¤
_pre_check(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
] = None,
) -> Tuple[FourierMesh, int]
Pre-check the input tensor and mesh. If the mesh is not registered, register it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. Default is None. If None, the mesh registered in the operator will be used. |
None
|
Returns:
Type | Description |
---|---|
Tuple[FourierMesh, int]
|
Tuple[FourierMesh, int]: Tuple of Fourier mesh and number of channels. |
Source code in torchfsm/operator/_base.py
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
|
register_mesh
¤
register_mesh(
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
],
n_channel: int,
device=None,
dtype=None,
)
Register the mesh and number of channels for the operator. Once a mesh is registered, mesh information is not required for integration and operator call.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. |
required |
n_channel
|
int
|
Number of channels of the input tensor. |
required |
device
|
Optional[device]
|
Device to which the mesh should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the mesh. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
|
regisiter_additional_check
¤
regisiter_additional_check(
func: Callable[[int, int], bool]
)
Register an additional check function for the value and mesh compatibility.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
func
|
Callable[[int, int], bool]
|
Function that takes the dimension of the value and mesh as input and returns a boolean indicating whether they are compatible. |
required |
Source code in torchfsm/operator/_base.py
589 590 591 592 593 594 595 596 |
|
add_generator
¤
add_generator(generator: GeneratorLike, coef=1)
Add a generator to the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generator
|
GeneratorLike
|
Generator to be added. It should be a callable that takes a Fourier mesh and number of channels as input and returns a linear coefficient or nonlinear function. |
required |
coef
|
float
|
Coefficient for the generator. Default is 1. |
1
|
Source code in torchfsm/operator/_base.py
598 599 600 601 602 603 604 605 606 607 |
|
set_integrator
¤
set_integrator(
integrator: Union[
Literal["auto"], ETDRKIntegrator, RKIntegrator
],
**integrator_config
)
Set the integrator for the operator. The integrator is used for time integration of the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
integrator
|
Union[Literal['auto'], ETDRKIntegrator, RKIntegrator]
|
Integrator to be used. If "auto", the integrator will be chosen automatically based on the operator type. If "auto", the integrator will be set as ETDRKIntegrator.ETDRK0 for linear operators and ETDRKIntegrator.ETDRK4 for nonlinear operators. |
required |
**integrator_config
|
Additional configuration for the integrator. |
{}
|
Source code in torchfsm/operator/_base.py
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
|
integrate
¤
integrate(
u_0: Optional[torch.Tensor] = None,
u_0_fft: Optional[torch.Tensor] = None,
dt: float = 1,
step: int = 1,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
progressive: bool = False,
trajectory_recorder: Optional[_TrajRecorder] = None,
return_in_fourier: bool = False,
) -> Union[
SpatialTensor["B C H ..."],
SpatialTensor["B T C H ..."],
FourierTensor["B C H ..."],
FourierTensor["B T C H ..."],
]
Integrate the operator using the provided initial condition and time step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u_0
|
Optional[Tensor]
|
Initial condition in spatial domain. Default is None. |
None
|
u_0_fft
|
Optional[Tensor]
|
Initial condition in Fourier domain. Default is None. At least one of u_0 or u_0_fft should be provided. |
None
|
dt
|
float
|
Time step for the integrator. Default is 1. |
1
|
step
|
int
|
Number of time steps to integrate. Default is 1. |
1
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
progressive
|
bool
|
If True, show a progress bar during integration. Default is False. |
False
|
trajectory_recorder
|
Optional[_TrajRecorder]
|
Trajectory recorder for recording the trajectory during integration. Default is None. If None, no trajectory will be recorded. The function will only return the final frame. |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], SpatialTensor['B T C H ...'], FourierTensor['B C H ...'], FourierTensor['B T C H ...']]
|
Union[SpatialTensor["B C H ..."], SpatialTensor["B T C H ..."], FourierTensor["B C H ..."], FourierTensor["B T C H ..."]]: Integrated result in spatial or Fourier domain. If trajectory_recorder is provided, the result will be a trajectory tensor of shape (B, T, C, H, ...). Otherwise, the result will be a tensor of shape (B, C, H, ...). If return_in_fourier is True, the result will be in Fourier domain. Otherwise, it will be in spatial domain. |
Source code in torchfsm/operator/_base.py
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
|
__call__
¤
__call__(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
return_in_fourier=False,
) -> Union[
SpatialTensor["B C H ..."], FourierTensor["B C H ..."]
]
Call the operator with the provided input tensor. The operator will apply the linear coefficient and nonlinear function to the input tensor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], FourierTensor['B C H ...']]
|
Union[SpatialTensor["B C H ..."], FourierTensor["B C H ..."]]: Result of the operator in spatial or Fourier domain. |
Source code in torchfsm/operator/_base.py
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
|
to
¤
to(device=None, dtype=None)
Move the operator to the specified device and change the data type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device
|
Optional[device]
|
Device to which the operator should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the operator. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
743 744 745 746 747 748 749 750 751 752 753 |
|
__add__
¤
__add__(other)
Source code in torchfsm/operator/_base.py
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 |
|
__mul__
¤
__mul__(other)
Source code in torchfsm/operator/_base.py
929 930 931 932 933 934 935 |
|
__neg__
¤
__neg__()
Source code in torchfsm/operator/_base.py
937 938 939 940 |
|
__init__
¤
__init__(
external_force: Optional[OperatorLike] = None,
) -> None
Source code in torchfsm/operator/dedicated/_navier_stokes.py
216 217 |
|
torchfsm.operator.NSPressureConvection
¤
Bases: NonlinearOperator
Operator for Navier-Stokes pressure convection.
It is defined as \(-\nabla (\nabla^{-2} \nabla \cdot (\left(\mathbf{u}\cdot\nabla\right)\mathbf{u}-f))-\left(\mathbf{u}\cdot\nabla\right)\mathbf{u} + \mathbf{f}\).
Note that this class is an operator wrapper. The real implementation of the source term is in the _NSPressureConvectionCore
class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
external_force
|
Optional[OperatorLike]
|
Optional[OperatorLike], optional, default=None |
None
|
Source code in torchfsm/operator/dedicated/_navier_stokes.py
257 258 259 260 261 262 263 264 265 266 267 268 |
|
_state_dict
instance-attribute
¤
_state_dict = {
"f_mesh": None,
"n_channel": None,
"linear_coef": None,
"nonlinear_func": None,
"operator": None,
"integrator": None,
"invert_linear_coef": None,
}
_value_mesh_check_func
instance-attribute
¤
_value_mesh_check_func = lambda dim_value, dim_mesh: True
set_de_aliasing_rate
¤
set_de_aliasing_rate(de_aliasing_rate: float)
Set the de-aliasing rate for the nonlinear operator. Args: de_aliasing_rate (float): De-aliasing rate. Default is ⅔.
Source code in torchfsm/operator/_base.py
275 276 277 278 279 280 281 282 283 |
|
__radd__
¤
__radd__(other)
Source code in torchfsm/operator/_base.py
176 177 |
|
__iadd__
¤
__iadd__(other)
Source code in torchfsm/operator/_base.py
179 180 |
|
__sub__
¤
__sub__(other)
Source code in torchfsm/operator/_base.py
182 183 184 185 186 |
|
__rsub__
¤
__rsub__(other)
Source code in torchfsm/operator/_base.py
188 189 190 191 192 |
|
__isub__
¤
__isub__(other)
Source code in torchfsm/operator/_base.py
194 195 |
|
__rmul__
¤
__rmul__(other)
Source code in torchfsm/operator/_base.py
197 198 |
|
__imul__
¤
__imul__(other)
Source code in torchfsm/operator/_base.py
200 201 |
|
__truediv__
¤
__truediv__(other)
Source code in torchfsm/operator/_base.py
203 204 205 206 207 |
|
_build_linear_coefs
¤
_build_linear_coefs(
linear_coefs: Optional[Sequence[LinearCoef]],
)
Build the linear coefficients based on the provided linear coefficient generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
linear_coefs
|
Optional[Sequence[LinearCoef]]
|
List of linear coefficient generators. |
required |
Source code in torchfsm/operator/_base.py
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
|
_build_nonlinear_funcs
¤
_build_nonlinear_funcs(
nonlinear_funcs: Optional[Sequence[NonlinearFunc]],
)
Build the nonlinear functions based on the provided nonlinear function generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nonlinear_funcs
|
Optional[Sequence[NonlinearFunc]]
|
List of nonlinear function generators. |
required |
Source code in torchfsm/operator/_base.py
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
|
_build_operator
¤
_build_operator()
Build the operator based on the linear coefficient and nonlinear function. If both linear coefficient and nonlinear function are None, the operator is set to None.
Source code in torchfsm/operator/_base.py
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
|
_build_integrator
¤
_build_integrator(dt: float)
Build the integrator based on the provided time step and integrator type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dt
|
float
|
Time step for the integrator. |
required |
Source code in torchfsm/operator/_base.py
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
|
_pre_check
¤
_pre_check(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
] = None,
) -> Tuple[FourierMesh, int]
Pre-check the input tensor and mesh. If the mesh is not registered, register it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. Default is None. If None, the mesh registered in the operator will be used. |
None
|
Returns:
Type | Description |
---|---|
Tuple[FourierMesh, int]
|
Tuple[FourierMesh, int]: Tuple of Fourier mesh and number of channels. |
Source code in torchfsm/operator/_base.py
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
|
register_mesh
¤
register_mesh(
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
],
n_channel: int,
device=None,
dtype=None,
)
Register the mesh and number of channels for the operator. Once a mesh is registered, mesh information is not required for integration and operator call.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. |
required |
n_channel
|
int
|
Number of channels of the input tensor. |
required |
device
|
Optional[device]
|
Device to which the mesh should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the mesh. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
|
regisiter_additional_check
¤
regisiter_additional_check(
func: Callable[[int, int], bool]
)
Register an additional check function for the value and mesh compatibility.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
func
|
Callable[[int, int], bool]
|
Function that takes the dimension of the value and mesh as input and returns a boolean indicating whether they are compatible. |
required |
Source code in torchfsm/operator/_base.py
589 590 591 592 593 594 595 596 |
|
add_generator
¤
add_generator(generator: GeneratorLike, coef=1)
Add a generator to the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
generator
|
GeneratorLike
|
Generator to be added. It should be a callable that takes a Fourier mesh and number of channels as input and returns a linear coefficient or nonlinear function. |
required |
coef
|
float
|
Coefficient for the generator. Default is 1. |
1
|
Source code in torchfsm/operator/_base.py
598 599 600 601 602 603 604 605 606 607 |
|
set_integrator
¤
set_integrator(
integrator: Union[
Literal["auto"], ETDRKIntegrator, RKIntegrator
],
**integrator_config
)
Set the integrator for the operator. The integrator is used for time integration of the operator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
integrator
|
Union[Literal['auto'], ETDRKIntegrator, RKIntegrator]
|
Integrator to be used. If "auto", the integrator will be chosen automatically based on the operator type. If "auto", the integrator will be set as ETDRKIntegrator.ETDRK0 for linear operators and ETDRKIntegrator.ETDRK4 for nonlinear operators. |
required |
**integrator_config
|
Additional configuration for the integrator. |
{}
|
Source code in torchfsm/operator/_base.py
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
|
integrate
¤
integrate(
u_0: Optional[torch.Tensor] = None,
u_0_fft: Optional[torch.Tensor] = None,
dt: float = 1,
step: int = 1,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
progressive: bool = False,
trajectory_recorder: Optional[_TrajRecorder] = None,
return_in_fourier: bool = False,
) -> Union[
SpatialTensor["B C H ..."],
SpatialTensor["B T C H ..."],
FourierTensor["B C H ..."],
FourierTensor["B T C H ..."],
]
Integrate the operator using the provided initial condition and time step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u_0
|
Optional[Tensor]
|
Initial condition in spatial domain. Default is None. |
None
|
u_0_fft
|
Optional[Tensor]
|
Initial condition in Fourier domain. Default is None. At least one of u_0 or u_0_fft should be provided. |
None
|
dt
|
float
|
Time step for the integrator. Default is 1. |
1
|
step
|
int
|
Number of time steps to integrate. Default is 1. |
1
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
progressive
|
bool
|
If True, show a progress bar during integration. Default is False. |
False
|
trajectory_recorder
|
Optional[_TrajRecorder]
|
Trajectory recorder for recording the trajectory during integration. Default is None. If None, no trajectory will be recorded. The function will only return the final frame. |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], SpatialTensor['B T C H ...'], FourierTensor['B C H ...'], FourierTensor['B T C H ...']]
|
Union[SpatialTensor["B C H ..."], SpatialTensor["B T C H ..."], FourierTensor["B C H ..."], FourierTensor["B T C H ..."]]: Integrated result in spatial or Fourier domain. If trajectory_recorder is provided, the result will be a trajectory tensor of shape (B, T, C, H, ...). Otherwise, the result will be a tensor of shape (B, C, H, ...). If return_in_fourier is True, the result will be in Fourier domain. Otherwise, it will be in spatial domain. |
Source code in torchfsm/operator/_base.py
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
|
__call__
¤
__call__(
u: Optional[SpatialTensor["B C H ..."]] = None,
u_fft: Optional[FourierTensor["B C H ..."]] = None,
mesh: Optional[
Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
]
] = None,
return_in_fourier=False,
) -> Union[
SpatialTensor["B C H ..."], FourierTensor["B C H ..."]
]
Call the operator with the provided input tensor. The operator will apply the linear coefficient and nonlinear function to the input tensor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
Optional[SpatialTensor]
|
Input tensor in spatial domain. Default is None. |
None
|
u_fft
|
Optional[FourierTensor]
|
Input tensor in Fourier domain. Default is None. At least one of u or u_fft should be provided. |
None
|
mesh
|
Optional[Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]]
|
Mesh information or mesh object. Default is None.
If None, the mesh registered in the operator will be used. You can use |
None
|
return_in_fourier
|
bool
|
If True, return the result in Fourier domain. If False, return the result in spatial domain. Default is False. |
False
|
Returns:
Type | Description |
---|---|
Union[SpatialTensor['B C H ...'], FourierTensor['B C H ...']]
|
Union[SpatialTensor["B C H ..."], FourierTensor["B C H ..."]]: Result of the operator in spatial or Fourier domain. |
Source code in torchfsm/operator/_base.py
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
|
to
¤
to(device=None, dtype=None)
Move the operator to the specified device and change the data type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device
|
Optional[device]
|
Device to which the operator should be moved. Default is None. |
None
|
dtype
|
Optional[dtype]
|
Data type of the operator. Default is None. |
None
|
Source code in torchfsm/operator/_base.py
743 744 745 746 747 748 749 750 751 752 753 |
|
__add__
¤
__add__(other)
Source code in torchfsm/operator/_base.py
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 |
|
__mul__
¤
__mul__(other)
Source code in torchfsm/operator/_base.py
929 930 931 932 933 934 935 |
|
__neg__
¤
__neg__()
Source code in torchfsm/operator/_base.py
937 938 939 940 |
|
__init__
¤
__init__(
external_force: Optional[OperatorLike] = None,
) -> None
Source code in torchfsm/operator/dedicated/_navier_stokes.py
267 268 |
|
Utils¤
torchfsm.operator.run_operators
¤
run_operators(
u: SpatialTensor["B C H ..."],
operators: Sequence[Operator],
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
],
) -> SpatialTensor["B C H ..."]
Run a sequence of operators on the input tensor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
SpatialTensor
|
Input tensor of shape (B, C, H, ...). |
required |
operators
|
Sequence[Operator]
|
Sequence of operators to be applied. |
required |
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. |
required |
Returns:
Name | Type | Description |
---|---|---|
SpatialTensor |
SpatialTensor['B C H ...']
|
Resulting tensor after applying the operators. |
Source code in torchfsm/operator/__init__.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
|
torchfsm.operator.check_value_with_mesh
¤
check_value_with_mesh(
u: SpatialTensor["B C H ..."],
mesh: Union[
Sequence[tuple[float, float, int]],
MeshGrid,
FourierMesh,
],
)
Check if the value and mesh are compatible. If not, raise a ValueError.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
u
|
SpatialTensor
|
Input tensor of shape (B, C, H, ...). |
required |
mesh
|
Union[Sequence[tuple[float, float, int]], MeshGrid, FourierMesh]
|
Mesh information or mesh object. |
required |
Source code in torchfsm/operator/_base.py
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
|