Operators
Available Operators¤
Operators are the core of ConvDO
, the spatial derivate with corresponding code representation is listed as follows:
Operation | Operator initialization | Code of operation |
---|---|---|
\(\frac{\partial p }{ \partial x}\) | grad_x=ConvGrad(direction="x") |
grad_x * p |
\(\frac{\partial p }{ \partial y}\) | grad_x=ConvGrad(direction="y") |
grad_y * p |
\(\nabla p = (\frac{\partial p }{ \partial p},\frac{\partial p }{ \partial y})\) | nabla=ConvNabla() |
nabla * p |
\(\nabla \cdot \mathbf{u}=\frac{\partial u_x }{ \partial x}+\frac{\partial u_y }{ \partial y}\) | nabla=ConvNabla() |
nabla @ u |
\(\frac{\partial^2 p }{ \partial x^2}\) | grad2_x=ConvGrad2(direction="x") |
grad2_x * p |
\(\frac{\partial^2 p }{ \partial y^2}\) | grad2_x=ConvGrad2(direction="y") |
grad2_y * p |
\(\nabla^2 p = (\frac{\partial^2 p }{ \partial x^2},\frac{\partial^2 p }{ \partial y^2})\) | nabla2=ConvLaplacian() |
nabla * p |
\(\nabla \cdot (\nabla \mathbf{u}) = (\frac{\partial u_x }{ \partial x}+\frac{\partial u_x }{ \partial y},\frac{\partial u_y }{ \partial x}+\frac{\partial u_y }{ \partial y})\) | nabla2=ConvLaplacian() |
nabla * u |
Note: If you use ConvDO.operations.FieldOperations
, the name of the operators is unchanged, e.g., the corresponding operator of grad_x
is self.grad_x
.
API Guide of Operators¤
ConvDO.conv_operators.ConvGrad
¤
ConvGrad(
order: int = 2,
direction: str = "x",
device="cpu",
dtype=torch.float32,
)
Gradient operator \(\partial / \partial x\) or \(\partial / \partial y\) for a scalar.
Examples:
p=ScalarField(torch.rand(1,1,10,10))
grad_x = ConvGrad(order=2, direction="x", device="cpu", dtype=torch.float32)
grad_y = ConvGrad(order=2, direction="y", device="cpu", dtype=torch.float32)
grad_x*p # $\partial p / \partial x$
grad_y*p # $\partial p / \partial y$
Parameters:
Name | Type | Description | Default |
---|---|---|---|
order |
int
|
The order of the central interpolation scheme (default is 2). |
2
|
direction |
str
|
The direction of the gradient operator, ("x" or "y", default is "x"). |
'x'
|
device |
str
|
The device to use for computation (default is "cpu"). |
'cpu'
|
dtype |
dtype
|
The data type to use for computation (default is torch.float32). |
float32
|
Returns:
Name | Type | Description |
---|---|---|
ConvOperator |
ConvOperator
|
The convolutional gradient operator. |
Source code in ConvDO/conv_operators.py
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
|
ConvDO.conv_operators.ConvNabla
¤
ConvNabla(order: int, device='cpu', dtype=torch.float32)
\(\nabla=(\partial p / \partial x,\partial p / \partial y)\) operator. Can be used to compute the gradient of a scalar field or the divergence of a vector field.
Examples:
Gradient of a scalar field:
```python
p=ScalarField(torch.rand(1,1,10,10))
nabla = ConvNabla(order=2, device="cpu", dtype=torch.float32)
nabla*p # $\nabla p$
```
Divergence of a vector field:
```python
u=VectorValue(ScalarField(torch.rand(1,1,10,10)),ScalarField(torch.rand(1,1,10,10)))
nabla = ConvNabla(order=2, device="cpu", dtype=torch.float32)
nabla@u # $\nabla \cdot u$
```
Args: order (int): The order of the central interpolation scheme (default is 2). device (str, optional): The device to use for computation (default is "cpu"). dtype (torch.dtype, optional): The data type to use for computation (default is torch.float32).
Returns:
Name | Type | Description |
---|---|---|
ConvOperator |
ConvOperator
|
The convolutional gradient operator. |
Source code in ConvDO/conv_operators.py
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
|
ConvDO.conv_operators.ConvGrad2
¤
ConvGrad2(
order: int = 2,
direction="x",
device="cpu",
dtype=torch.float32,
)
Second order gradient operator \(\partial^2 / \partial x^2\) or \(\partial^2 / \partial y^2\) for a scalar.
Examples:
p=ScalarField(torch.rand(1,1,10,10))
grad_x = ConvGrad2(order=2, direction="x", device="cpu", dtype=torch.float32)
grad_y = ConvGrad2(order=2, direction="y", device="cpu", dtype=torch.float32)
grad_x*p # $\partial^2 p / \partial x^2$
grad_y*p # $\partial^2 p / \partial y^2$
Parameters:
Name | Type | Description | Default |
---|---|---|---|
order |
int
|
The order of the central Laplacian scheme (default is 2). |
2
|
direction |
str
|
The direction of the gradient operator, ("x" or "y", default is "x"). |
'x'
|
device |
str
|
The device to use for computation (default is "cpu"). |
'cpu'
|
dtype |
dtype
|
The data type to use for computation (default is torch.float32). |
float32
|
Returns:
Name | Type | Description |
---|---|---|
ConvOperator |
ConvOperator
|
The convolutional gradient operator. |
Source code in ConvDO/conv_operators.py
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
|
ConvDO.conv_operators.ConvLaplacian
¤
Laplacian operator. For scalar field, it is defined as \(\nabla^2 p = \partial^2 p / \partial x^2 + \partial^2 p / \partial y^2\). For vector field, it is defined as \(\nabla \cdot (\nabla \mathbf{u}) = (\frac{\partial u_x }{ \partial x}+\frac{\partial u_x }{ \partial y},\frac{\partial u_y }{ \partial x}+\frac{\partial u_y }{ \partial y})\).
Examples:
Gradient of a scalar field:
```python
p=ScalarField(torch.rand(1,1,10,10))
nabla2 = ConvLaplacian(order=2, device="cpu", dtype=torch.float32)
nabla2*p # $\nabla^2 p$
```
Divergence of a vector field:
```python
u=VectorValue(ScalarField(torch.rand(1,1,10,10)),ScalarField(torch.rand(1,1,10,10)))
nabla2 = ConvLaplacian(order=2, device="cpu", dtype=torch.float32)
nabla*u # $\nabla \cdot (\nabla \mathbf{u})$
```
Parameters:
Name | Type | Description | Default |
---|---|---|---|
order |
int
|
The order of the central Laplacian scheme (default is 2). |
required |
device |
str
|
The device to use for computation (default is "cpu"). |
'cpu'
|
dtype |
dtype
|
The data type to use for computation (default is torch.float32). |
float32
|
Returns:
Name | Type | Description |
---|---|---|
ConvOperator |
ConvOperator
|
The convolutional gradient operator. |
Source code in ConvDO/conv_operators.py
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
|
op_x
instance-attribute
¤
op_x = ConvOperator(
CENTRAL_LAPLACIAN_SCHEMES[order],
direction="x",
derivative=2,
device=device,
dtype=dtype,
)
op_y
instance-attribute
¤
op_y = ConvOperator(
CENTRAL_LAPLACIAN_SCHEMES[order],
direction="y",
derivative=2,
device=device,
dtype=dtype,
)
__init__
¤
__init__(
order: int, device="cpu", dtype=torch.float32
) -> None
Source code in ConvDO/conv_operators.py
266 267 268 269 270 |
|
__mul__
¤
__mul__(other)
Source code in ConvDO/conv_operators.py
272 273 274 275 276 277 278 279 |
|